• Research Article

    Analysis of false alarm possibility using simulation of back-scattering signals from water masses

    수괴 산란신호 모의를 통한 오탐 가능성 분석

    Yonghoon Ha

    하용훈

    In this paper numerical wave propagation experiments have been performed to visually confirm whether the signals scattered by water masses can be ...

    본 논문에서는 수괴가 능동소나에서 허위표적으로 오인 탐지 될 수 있는지에 대한 여부를 시각적으로 확인하기 위해 시간영역에 대한 음파 전달 수치 실험을 수행하였다 ...

    + READ MORE
    In this paper numerical wave propagation experiments have been performed to visually confirm whether the signals scattered by water masses can be a false alarm in active sonar. The numerical environments consist of exaggerated water masses as targets in free space. Using a pseudospectral time-domain model for irregular boundary, the back-scattered signals have been calculated and compared with analytic solutions. Also, the sound propagation was simulated. Consequently, it was verified that water masses themselves could not be detected as a false target.


    본 논문에서는 수괴가 능동소나에서 허위표적으로 오인 탐지 될 수 있는지에 대한 여부를 시각적으로 확인하기 위해 시간영역에 대한 음파 전달 수치 실험을 수행하였다. 수치 실험을 위해 무한영역에 과장된 수괴를 표적으로 구성하였으며 불연속 경계에 대해 개발된 시간영역 유사스펙트럴 모델을 이용하여 산란신호를 계산하고 해석해와 비교하였다. 또한, 시간에 따른 음파전달양상을 모의하였다. 이를 통해 수괴 자체가 허위표적으로 탐지 될 수 없음을 확인하였다.

    - COLLAPSE
    March 2021
  • Research Article

    A robust data association gate method of non-linear target tracking in dense cluttered environment

    고밀도 클러터 환경에서 비선형 표적추적에 강인한 자료결합 게이트 기법

    Seong-Weon Kim, Taek-Ik Kwon, and Hyeon-Deok Cho

    김성원, 권택익, 조현덕

    This paper proposes the H norm based data association gate method to apply robustly the data association gate of passive sonar automatic ...

    본 논문은 고밀도 클러터 환경 비선형 표적에 대해서 수동소나 자동표적추적 자료결합 게이트를 강인하게 적용하기 위한 H 놈 기반의 자료결합 게이트 기법을 제안한다 ...

    + READ MORE
    This paper proposes the H norm based data association gate method to apply robustly the data association gate of passive sonar automatic target tracking which is on non-linear targets in dense cluttered environment. For target tracking, data association method selects the measurements within validated gate, which means validated measuring extent, as candidates for the data association. If the extent of the validated gate in the data association is not proper or the data association executes under dense cluttered environment, it is difficult to maintain the robustness of target tracking due to interference of clutter measurements. To resolve this problem, this paper proposes a novel gating method which applies H norm based bisection algorithm combined with 3-σ gate method under Gaussian distribution assumption and tracking error covariance. The proposed method leads to alleviate the interference of clutters and to track the non-linear maneuvering target robustly. Through analytic method and simulation to utilize simulated data of horizontal and vertical bearing measurements, improvement of data association robustness is confirmed contrary to the conventional method.


    본 논문은 고밀도 클러터 환경 비선형 표적에 대해서 수동소나 자동표적추적 자료결합 게이트를 강인하게 적용하기 위한 H 놈 기반의 자료결합 게이트 기법을 제안한다. 표적추적을 위한 자료결합 기법은 유효 측정 범위인 유효 게이트 내에 있는 측정치를 자료결합의 후보대상으로 선택한다. 자료결합에서의 유효 게이트 범위가 적정하지 않거나 고밀도 클러터 환경에서 자료결합이 수행되면, 클러터 측정치의 간섭을 더욱 받게 되어 표적추적의 강인성을 유지하기 어렵다. 이러한 문제를 해결하기 위해서, 본 논문은 가우시안 분포 가정 및 추적 오차 공분산 기반의 기존 3-σ 게이트 기법에 H 놈 기반의 이분법 알고리즘을 결합하여 적용한 새로운 게이팅 기법을 제안한다. 제안 기법은 클러터의 간섭을 완화시키고, 비선형 기동표적을 견실하게 추적하게 한다. 해석적인 분석 방법과 수평방위 및 수직방위의 측정치를 모의한 신호를 활용한 시뮬레이션을 통해 자료결합의 강인함이 기존 기법에 대비하여 향상됨을 확인하였다.

    - COLLAPSE
    March 2021
  • Research Article

    Side scan sonar image super-resolution using an improved initialization structure

    향상된 초기화 구조를 이용한 측면주사소나 영상 초해상도 영상복원

    Junyeop Lee, Bon-hwa Ku, Wan-Jin Kim, and Hanseok Ko

    이준엽, 구본화, 김완진, 고한석

    This paper deals with a super-resolution that improves the resolution of side scan sonar images using learning-based compressive sensing. Learning-based compressive sensing ...

    본 논문에서는 학습 기반 압축 센싱을 이용하여 측면 주사 소나 영상의 해상도를 향상하는 초해상도 기법을 다룬다. 딥러닝과 압축 센싱이 접목된 학습 기반 ...

    + READ MORE
    This paper deals with a super-resolution that improves the resolution of side scan sonar images using learning-based compressive sensing. Learning-based compressive sensing combined with deep learning and compressive sensing takes a structure of a feed-forward network and parameters are set automatically through learning. In particular, we propose a method that can effectively extract additional information required in the super-resolution process through various initialization methods. Representative experimental results show that the proposed method provides improved performance in terms of Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity Index Measure (SSIM) than conventional methods.


    본 논문에서는 학습 기반 압축 센싱을 이용하여 측면 주사 소나 영상의 해상도를 향상하는 초해상도 기법을 다룬다. 딥러닝과 압축 센싱이 접목된 학습 기반 압축 센싱은 구조적인 측면에서 피드-포워드(feed forward) 네트워크 형태이며 학습을 통하여 파라미터들을 자동으로 설정하게 된다. 본 논문에서는 초해상도 과정에서 필요한 추가 정보들을 다양한 초기화 방법을 통해 효과적으로 추출할 수 있는 방법을 제안한다. 다양한 모의 실험에서 제안하는 방법은 기존 방식보다 Peak Signal-to-Noise Ratio(PSNR) 및 Structure Similarity Index Measure(SSIM) 지표상 향상된 성능 결과를 나타내었다.

    - COLLAPSE
    March 2021
  • Research Article

    Analysis of normalization effect for earthquake events classification

    지진 이벤트 분류를 위한 정규화 기법 분석

    Shou Zhang, Bonhwa Ku, and Hansoek Ko

    장수, 구본화, 고한석

    This paper presents an effective structure by applying various normalization to Convolutional Neural Networks (CNN) for seismic event classification. Normalization techniques can ...

    본 논문에서는 지진 이벤트 분류를 위한 다양한 정규화 기법 분석 및 효과적인 합성곱 신경망(Convolutional Neural Network, CNN)기반의 네트워크 구조를 제안하였다 ...

    + READ MORE
    This paper presents an effective structure by applying various normalization to Convolutional Neural Networks (CNN) for seismic event classification. Normalization techniques can not only improve the learning speed of neural networks , but also show robustness to noise. In this paper, we analyze the effect of input data normalization and hidden layer normalization on the deep learning model for seismic event classification. In addition an effective model is derived through various experiments according to the structure of the applied hidden layer. As a result of various experiments, the model that applied input data normalization and weight normalization to the first hidden layer showed the most stable performance improvement.


    본 논문에서는 지진 이벤트 분류를 위한 다양한 정규화 기법 분석 및 효과적인 합성곱 신경망(Convolutional Neural Network, CNN)기반의 네트워크 구조를 제안하였다. 정규화 기법은 신경망의 학습 속도를 개선할 뿐만 아니라 잡음에 강인한 모습을 보여 준다. 본 논문에서는 지진 이벤트 분류를 위한 딥러닝 모델에서 입력 정규화 및 은닉 레이어 정규화가 모델에 미치는 영향을 분석하였다. 또한, 적용 은닉 레이어의 구조에 따른 다양한 실험을 통해 효과적인 모델을 도출하였다. 다양한 모의실험 결과 입력 데이터 정규화 및 제1 은닉 레이어에 가중치 정규화를 적용한 모델이 가장 안정적인 성능 향상을 보여 주었다.

    - COLLAPSE
    March 2021
  • Research Article

    Performance analysis of weakly-supervised sound event detection system based on the mean-teacher convolutional recurrent neural network model

    평균-교사 합성곱 순환 신경망 모델을 이용한 약지도 음향 이벤트 검출 시스템의 성능 분석

    Seokjin Lee

    이석진

    This paper introduces and implements a Sound Event Detection (SED) system based on weakly- supervised learning where only part of the data ...

    본 논문은 데이터의 일부만 레이블링이 되어있는 약지도 학습을 기반으로 하는 음향 이벤트 검출 시스템을 소개 및 구현하고, 시뮬레이션을 통해 각 파라미터가 성능에 ...

    + READ MORE
    This paper introduces and implements a Sound Event Detection (SED) system based on weakly- supervised learning where only part of the data is labeled, and analyzes the effect of parameters. The SED system estimates the classes and onset/offset times of events in the acoustic signal. In order to train the model, all information on the event class and onset/offset times must be provided. Unfortunately, the onset/offset times are hard to be labeled exactly. Therefore, in the weakly-supervised task, the SED model is trained by “strongly labeled data” including the event class and activations, “weakly labeled data” including the event class, and “unlabeled data” without any label. Recently, the SED systems using the mean-teacher model are widely used for the task with several parameters. These parameters should be chosen carefully because they may affect the performance. In this paper, performance analysis was performed on parameters, such as the feature, moving average parameter, weight of the consistency cost function, ramp-up length, and maximum learning rate, using the data of DCASE 2020 Task 4. Effects and the optimal values of the parameters were discussed.


    본 논문은 데이터의 일부만 레이블링이 되어있는 약지도 학습을 기반으로 하는 음향 이벤트 검출 시스템을 소개 및 구현하고, 시뮬레이션을 통해 각 파라미터가 성능에 미치는 영향을 분석하였다. 음향 이벤트 검출 시스템은 음향 신호 내에 존재하는 이벤트의 종류, 시작/종료 시점을 추정하는 시스템으로, 이를 학습시키기 위해서는 음향 이벤트 신호와 그 종류, 시작/종료 시점에 대한 모든 정보가 제공되어야 한다. 하지만 이를 모두 표기하여 학습데이터를 만드는 것은 매우 큰 비용이 들어가며, 특히 시작/종료 시점을 정확히 표기하는 것은 매우 어렵다. 따라서 본 논문에서 다루는 약지도 학습 문제에서는 이벤트의 종류와 시작/종료 시점이 모두 표기된 “강하게 표기된 데이터”와, 이벤트의 종류만 표기된 “약하게 표기된 데이터”, 그리고 아무런 표기가 되어 있지 않은 “미표기 데이터”를 이용하여 음향 이벤트 검출 시스템을 학습시킨다. 최근 이러한 문제에서는 평균-교사 모델을 이용한 음향 이벤트 검출 시스템의 성능이 우수하며, 따라서 널리 사용되고 있다. 다만, 평균-교사 모델은 많은 파라미터를 가지고 있고, 이는 성능에 영향을 다소 미칠 수 있으므로 신중하게 선택되어야 한다. 본 논문에서는 DCASE 2020 Task 4의 데이터를 이용하여 특징 값의 종류, 이동 평균 파라미터, 일관성 비용함수의 가중치, 램프-업 길이, 그리고 최대 학습율 등 5가지의 값에 대해 성능 분석을 진행하였으며, 각 파라미터에 대한 영향 및 최적 값에 대해 고찰하였다.

    - COLLAPSE
    March 2021
  • Research Article

    Segment unit shuffling layer in deep neural networks for text-independent speaker verification

    문장 독립 화자 인증을 위한 세그멘트 단위 혼합 계층 심층신경망

    Jungwoo Heo, Hye-jin Shim, Ju-ho Kim, and Ha-Jin Yu

    허정우, 심혜진, 김주호, 유하진

    Text-Independent speaker verification needs to extract text-independent speaker embedding to improve generalization performance. However, deep neural networks that depend on training data ...

    문장 독립 화자 인증 연구에서는 일반화 성능 향상을 위해 문장 정보와 독립적인 화자 특징을 추출하는 것이 필수적이다. 그렇지만 심층 신경망은 학습 데이터에 ...

    + READ MORE
    Text-Independent speaker verification needs to extract text-independent speaker embedding to improve generalization performance. However, deep neural networks that depend on training data have the potential to overfit text information instead of learning the speaker information when repeatedly learning from the identical time series. In this paper, to prevent the overfitting, we propose a segment unit shuffling layer that divides and rearranges the input layer or a hidden layer along the time axis, thus mixes the time series information. Since the segment unit shuffling layer can be applied not only to the input layer but also to the hidden layers, it can be used as generalization technique in the hidden layer, which is known to be effective compared to the generalization technique in the input layer, and can be applied simultaneously with data augmentation. In addition, the degree of distortion can be adjusted by adjusting the unit size of the segment. We observe that the performance of text-independent speaker verification is improved compared to the baseline when the proposed segment unit shuffling layer is applied.


    문장 독립 화자 인증 연구에서는 일반화 성능 향상을 위해 문장 정보와 독립적인 화자 특징을 추출하는 것이 필수적이다. 그렇지만 심층 신경망은 학습 데이터에 의존적이므로, 동일한 시계열 정보를 반복 학습할 경우, 화자 정보를 학습하는 대신 문장 정보에 과적합 될 수 있다. 본 논문에서는 이러한 과적합을 방지하기 위해 시간 축으로 입력층 혹은 은닉층을 분할 및 무작위 재배열하여 시계열 정보의 순서를 뒤섞는 세그멘트 단위 혼합 계층을 제안한다. 세그멘트 단위 혼합 계층은 입력층 뿐만 아니라 은닉층에도 적용이 가능하므로, 입력층에서의 일반화 기법에 비해 효과적이라 알려진 은닉층에서의 일반화 기법으로 활용이 가능하며, 기존의 데이터 증강 방법과 동시에 적용할 수도 있다. 뿐만 아니라, 세그멘트의 단위 크기를 조절하여 혼합의 정도를 조절할 수도 있다. 본 논문에서는 제안한 방법을 적용하여 문장 독립 화자 인증 성능이 개선됨을 확인하였다.

    - COLLAPSE
    March 2021
  • Research Article

    Snoring sound detection method using attention-based convolutional bidirectional gated recurrent unit

    주의집중 기반의 합성곱 양방향 게이트 순환 유닛을 이용한 코골이 소리 검출 방식

    Min-Soo Kim, Gi Yong Lee, and Hyoung-Gook Kim

    김민수, 이기용, 김형국

    This paper proposes an automatic method for detecting snore sound, one of the important symptoms of sleep apnea patients. In the proposed ...

    본 논문은 수면 무호흡 환자의 중요한 증상 중의 하나인 코골이 사운드 자동 검출 방식을 제안한다. 제안된 방식에서는 수면 중 발생하는 소리 신호를 ...

    + READ MORE
    This paper proposes an automatic method for detecting snore sound, one of the important symptoms of sleep apnea patients. In the proposed method, sound signals generated during sleep are input to detect a sound generation section, and a spectrogram transformed from the detected sound section is applied to a classifier based on a convolutional bidirectional gated recurrent unit (CBGRU) with attention mechanism. The applied attention mechanism improved the snoring sound detection performance by extending the CBGRU model to learn discriminative feature representation for the snoring detection. The experimental results show that the proposed snoring detection method improves the accuracy by approximately 3.1 % ~ 5.5 % than existing method.


    본 논문은 수면 무호흡 환자의 중요한 증상 중의 하나인 코골이 사운드 자동 검출 방식을 제안한다. 제안된 방식에서는 수면 중 발생하는 소리 신호를 입력받아 소리 발생 구간을 검출하고, 검출된 소리 구간으로부터 변환된 스펙트로그램을 주의집중 기반의 합성곱 양방향 게이트 순환 유닛 기반의 분류기에 적용하였다. 적용된 주의집중 메커니즘은 합성곱 양방향 게이트 순환 유닛 모델을 확장하여 코골이 소리에 대한 차별적 특징 표현을 학습함으로써 코골이 검출 성능을 향상시켰다. 실험 결과는 제안하는 코골이 검출 방식이 기존 방식보다 약 3.1 % ~ 5.5 %의 정확도 향상을 보여준다.

    - COLLAPSE
    March 2021
  • Research Article

    An acoustic Doppler-based silent speech interface technology using generative adversarial networks

    생성적 적대 신경망을 이용한 음향 도플러 기반 무 음성 대화기술

    Ki-Seung Lee

    이기승

    In this paper, a Silent Speech Interface (SSI) technology was proposed in which Doppler frequency shifts of the reflected signal were used ...

    본 논문에서는 발성하고 있는 입 주변에 40 kHz의 주파수를 갖는 초음파 신호를 방사하고 되돌아오는 신호의 도플러 변이를 검출하여 발성음을 합성하는 무 음성 ...

    + READ MORE
    In this paper, a Silent Speech Interface (SSI) technology was proposed in which Doppler frequency shifts of the reflected signal were used to synthesize the speech signals when 40kHz ultrasonic signal was incident to speaker’s mouth region. In SSI, the mapping rules from the features derived from non-speech signals to those from audible speech signals was constructed, the speech signals are synthesized from non-speech signals using the constructed mapping rules. The mapping rules were built by minimizing the overall errors between the estimated and true speech parameters in the conventional SSI methods. In the present study, the mapping rules were constructed so that the distribution of the estimated parameters is similar to that of the true parameters by using Generative Adversarial Networks (GAN). The experimental result using 60 Korean words showed that, both objectively and subjectively, the performance of the proposed method was superior to that of the conventional neural networks-based methods.


    본 논문에서는 발성하고 있는 입 주변에 40 kHz의 주파수를 갖는 초음파 신호를 방사하고 되돌아오는 신호의 도플러 변이를 검출하여 발성음을 합성하는 무 음성 대화기술을 제안하였다. 무음성 대화 기술에서는 비 음성 신호로부터 추출된 특징변수와 해당 음성 신호의 파라메터 간 대응 규칙을 생성하고 이를 이용하여 음성신호를 합성하게 된다. 기존의 무 음성 대화기술에서는 추정된 음성 파라메터와 실제 음성 파라메터간의 오차가 최소화되도록 대응규칙을 생성한다. 본 연구에서는 추정 음성 파라메터가 실제 음성 파라메터의 분포와 유사하도록 생성적 적대 신경망을 도입하여 대응 규칙을 생성하도록 하였다. 60개 한국어 음성을 대상으로 한 실험에서 제안된 기법은 객관적, 주관적 지표 상 으로 기존의 신경망 기반 기법보다 우수한 성능을 나타내었다.

    - COLLAPSE
    March 2021
  • Research Article

    Development of deep learning-based holographic ultrasound generation algorithm

    딥러닝 기반 초음파 홀로그램 생성 알고리즘 개발

    Moon Hwan Lee and Jae Youn Hwang

    이문환, 황재윤

    Recently, an ultrasound hologram and its applications have gained attention in the ultrasound research field. However, the determination technique of transmit signal ...

    최근 입자 조작, 신경 자극 등을 위해 초음파 홀로그램과 그 응용에 대해 연구가 활발히 되고 있다. 하지만 홀로그램을 생성할 송신 신호 위상의 ...

    + READ MORE
    Recently, an ultrasound hologram and its applications have gained attention in the ultrasound research field. However, the determination technique of transmit signal phases, which generate a hologram, has not been significantly advanced from the previous algorithms which are time-consuming iterative methods. Thus, we applied the deep learning technique, which has been previously adopted to generate an optical hologram, to generate an ultrasound hologram. We further examined the Deep learning-based Holographic Ultrasound Generation algorithm (Deep-HUG). We implement the U-Net-based algorithm and examine its generalizability by training on a dataset, which consists of randomly distributed disks, and testing on the alphabets (A-Z). Furthermore, we compare the Deep-HUG with the previous algorithm in terms of computation time, accuracy, and uniformity. It was found that the accuracy and uniformity of the Deep-HUG are somewhat lower than those of the previous algorithm whereas the computation time is 190 times faster than that of the previous algorithm, demonstrating that Deep-HUG has potential as a useful technique to rapidly generate an ultrasound hologram for various applications.


    최근 입자 조작, 신경 자극 등을 위해 초음파 홀로그램과 그 응용에 대해 연구가 활발히 되고 있다. 하지만 홀로그램을 생성할 송신 신호 위상의 결정은 이전의 시간 소모적인 반복 최적화 방법에서 크게 벗어나지 않고 있다. 이에 본 연구에서는 광학 홀로그램 생성을 위해 활용된 바 있는 딥러닝 기법을 초음파 홀로그램 생성을 위해 적용하여 소개한다. U-Net을 기반으로 알고리즘을 구성하였으며 원 모양의 데이터셋에 대해 학습하고 영어 알파벳에 대해 평가함으로써 그 일반화 가능성을 검증하였다. 또한 시뮬레이션을 통해 기존 알고리즘과 계산속도, 정확도, 균일도 측면에서 비교하였다. 결과적으로 정확도와 균일도는 기존에 비해 다소 떨어지지만 계산속도가 약 190배 빨라졌다. 따라서, 이 결과를 통해 딥러닝 기반 초음파 홀로그램 생성 알고리즘은 기존 방법보다 초음파 홀로그램을 빠르게 형성할 수 있는 것을 확인할 수 있었다.

    - COLLAPSE
    March 2021
  • Research Article

    Performance comparison evaluation of speech enhancement using various loss functions

    다양한 손실 함수를 이용한 음성 향상 성능 비교 평가

    Seo-Rim Hwang, Joon Byun, and Young-Cheol Park

    황서림, 변준, 박영철

    This paper evaluates and compares the performance of the Deep Nerual Network (DNN)-based speech enhancement models according to various loss functions ...

    본 논문은 다양한 손실 함수에 따른 Deep Nerual Network(DNN) 기반 음성 향상 모델의 성능을 비교 평가한다. 베이스라인 모델로는 음성의 위상 정보를 ...

    + READ MORE
    This paper evaluates and compares the performance of the Deep Nerual Network (DNN)-based speech enhancement models according to various loss functions. We used a complex network that can consider the phase information of speech as a baseline model. As the loss function, we consider two types of basic loss functions; the Mean Squared Error (MSE) and the Scale-Invariant Source-to-Noise Ratio (SI-SNR), and two types of perceptual- based loss functions, including the Perceptual Metric for Speech Quality Evaluation (PMSQE) and the Log Mel Spectra (LMS). The performance comparison was performed through objective evaluation and listening tests with outputs obtained using various combinations of the loss functions. Test results show that when a perceptual-based loss function was combined with MSE or SI-SNR, the overall performance is improved, and the perceptual-based loss functions, even exhibiting lower objective scores showed better performance in the listening test.


    본 논문은 다양한 손실 함수에 따른 Deep Nerual Network(DNN) 기반 음성 향상 모델의 성능을 비교 평가한다. 베이스라인 모델로는 음성의 위상 정보를 고려할 수 있는 복소 네트워크를 사용하였다. 손실 함수는 두 가지 유형의 기본 손실 함수, Mean Squared Error(MSE)와 Scale-Invariant Source-to-Noise Ratio(SI-SNR)를 사용하였으며 두 가지 유형의 지각 기반 손실 함수 Perceptual Metric for Speech Quality Evaluation(PMSQE)과 Log Mel Spectra(LMS)를 사용한다. 성능은 각 손실 함수의 다양한 조합을 사용하여 얻은 출력을 객관적인 평가와 청취 테스트를 통해 측정하였다. 실험 결과, 지각기반 손실 함수를 MSE 또는 SI-SNR과 결합하였을 때 전반적으로 성능이 향상되며, 지각기반 손실함수를 사용하면 객관적 지표에서 약세를 보이는 경우라도 청취 테스트에서 우수한 성능을 보임을 확인하였다.

    - COLLAPSE
    March 2021