All Issue

2025 Vol.44, Issue 3 Preview Page

Review Article

31 May 2025. pp. 240-248
Abstract
References
1

F. Carricondo and B. Romero‐Gómez, "The cochlear spiral ganglion neurons: the auditory portion of the VIII nerve," Anat. Rec. (Hoboken) 302, 463-471 (2019).

10.1002/ar.2381529659185
2

B. A. Nayagam, M. A. Muniak, and D. K. Ryugo, "The spiral ganglion: Connecting the peripheral and central auditory systems," Hear. Res. 278, 2-20 (2011).

10.1016/j.heares.2011.04.00321530629PMC3152679
3

J. M. Appler and L. V. Goodrich, "Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly," Prog. Neurobiol. 93, 488-508 (2011).

10.1016/j.pneurobio.2011.01.00421232575PMC3078955
4

J. P. Rauschecker and R. V. Shannon, "Sending sound to the brain," Science, 295, 1025-1029 (2002).

10.1126/science.106779611834822
5

K. Young, M. R. Grewal, R. C. Diaz, A. W. Wu, and M. E. Miller, "Cochlear implantation after stereotactic radiosurgery for vestibular schwannoma: initial hearing improvement and longevity of hearing restoration," Otology & Neurotology, 44, 201-208 (2023).

10.1097/MAO.000000000000381536728114
6

B. H. Duhon, E. C. Bielefeld, Y. Ren, and J. Naidoo, "Gene therapy advancements for the treatment of acquired and hereditary hearing loss," Front. Audiol. Otol. 2, 1423853 (2024).

10.3389/fauot.2024.1423853
7

P. A. Leake, O. Akil, and H. Lang, "Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness," Hear. Res. 394, 107955 (2020).

10.1016/j.heares.2020.10795532331858PMC7660539
8

M. Wang, L. Xu, Y. Han, X. Wang, F. Chen, J. Lu, H. Wang, and W. Liu, "Regulation of spiral ganglion neuron regeneration as a therapeutic strategy in sensorineural hearing loss," Front. Mol. Neurosci. 14, 829564 (2022).

10.3389/fnmol.2021.82956435126054PMC8811300
9

W.-M. Yu and L. V. Goodrich, "Morphological and physiological development of auditory synapses," Hear. Res. 311, 3-16 (2014).

10.1016/j.heares.2014.01.00724508369PMC4122648
10

D. O. Reijntjes and S. J. Pyott, "The afferent signaling complex: regulation of type I spiral ganglion neuron responses in the auditory periphery," Hear. Res. 336, 1-16 (2016).

10.1016/j.heares.2016.03.01127018296
11

F. E. Musiek and J. A. Baran, The Auditory System: Anatomy, Physiology, and Clinical Correlates, 2nd ed. (Allyn & Bacon, Boston, 2007), pp. 150-171.

12

M. C. Brown, A. M. Berglund, N. Y. Kiang, and D. K. Ryugo, "Central trajectories of type II spiral ganglion neurons," J. Comp. Neurol. 278, 581-590 (1988).

10.1002/cne.9027804093230171
13

H. Spoendlin and A. Schrott, "Analysis of the human auditory nerve," Hear. Res. 43, 25-38 (1989).

10.1016/0378-5955(89)90056-72613564
14

M. R. Romand and R. Romand, "The ultrastructure of spiral ganglion cells in the mouse," Acta. Otolaryngol. 104, 29-39 (1987).

10.3109/000164887091090443661162
15

L. B. Hurd, K. A. Hutson, and D. K. Morest, "Cochlear nerve projections to the small cell shell of the cochlear nucleus: the neuroanatomy of extremely thin sensory axons," Synapse, 33, 83-117 (1999).

10.1002/(SICI)1098-2396(199908)33:2<83::AID-SYN1>3.0.CO;2-9
16

D. B. Polley, A. H. Seidl, Y. Wang, and J. T. Sanchez, "Functional circuit development in the auditory system," in Neural Circuit Development and Function in the Healthy and Diseased Brain, edited by J. Rubenstein and P. Rakic (Academic Press, Cambridge, 2013).

10.1016/B978-0-12-397267-5.00136-9
17

F. E. Musiek and J. A. Baran, The Auditory System: Anatomy, Physiology, and Clinical Correlates, 2nd ed. (Allyn & Bacon, Boston, 2007), pp. 1-37.

18

E. M. Spickler and L. Govila, "The vestibulocochlear nerve," Semin. Ultrasound CT MRI, 218-237 (2002).

10.1016/S0887-2171(02)90048-X12168998
19

M. A. Muniak, A. Rivas, K. L. Montey, B. J. May, H. W. Francis, and D. K. Ryugo, "3D model of frequency representation in the cochlear nucleus of the CBA/J mouse," J. Comp. Neurol. 521, 1510-1532 (2013).

10.1002/cne.2323823047723PMC3992438
20

F. A. Thiers, J. B. Nadol, and M. C. Liberman, "Reciprocal synapses between outer hair cells and their afferent terminals: evidence for a local neural network in the mammalian cochlea," J. Assoc. Res. Otolaryngol. 9, 477-489 (2008).

10.1007/s10162-008-0135-x18688678PMC2580814
21

N. B. Cant and C. G. Benson, "Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei," Brain Res. Bull. 60, 457-474 (2003).

10.1016/S0361-9230(03)00050-912787867
22

W. B. Dublin, "The cochlear nuclei revisited," Otolaryngol. Head Neck Surg. 90, 744-760 (1982).

10.1177/01945998820900061310994424
23

J. J. Guinan Jr, "Physiology of olivocochlea efferents," in The Cochlea, edited by P. Dallos, A. N. Popper and R. R. Fay (Springer, New York, 1996).

24

P. A. Fuchs and A. M. Lauer, "Efferent inhibition of the cochlea," Cold Spring Harb. Perspect. Med. 9, a033530 (2019).

10.1101/cshperspect.a03353030082454PMC6496333
25

A. B. Elgoyhen and E. Katz, "The efferent medial olivocochlear-hair cell synapse," J. Physiol. Paris, 106, 47-56 (2011).

10.1016/j.jphysparis.2011.06.00121762779PMC3213294
26

A. Brandt, J. Striessnig, and T. Moser, "CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells," J. Neurosci. 23, 10832-10840 (2003).

10.1523/JNEUROSCI.23-34-10832.200314645476PMC6740966
27

S. L. Johnson, S. Safieddine, M. Mustapha, and W. Marcotti, "Hair cell afferent synapses: Function and dysfunction," Cold Spring Harb. Perspect. Med. 9, a033175 (2019).

10.1101/cshperspect.a03317530617058PMC6886459
28

D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.-S. LaMantia, R. D. Mooney, M. L. Platt, and L. E. White, Neuroscience, 6th ed. (Sinauer Associates, New York, 2017), pp. 277-302.

29

J. Feher, "The neuromuscular junction and excitaion- contraction coupling," in Quantitative Human Physiology, 2nd ed. (Academic Press, Cambridge, 2017).

10.1016/B978-0-12-800883-6.00029-X
30

E. Glowatzki and P. A. Fuchs, "Transmitter release at the hair cell ribbon synapse," Nat. Neurosci. 5, 147-154 (2002).

10.1038/nn79611802170
31

R. Metherate, "Synaptic mechanisms in auditory cortex function," Front. Biosci. 3, 494 (1998).

10.2741/A2969569228
32

G. Matthews and P. Fuchs, "The diverse roles of ribbon synapses in sensory neurotransmission," Nat. Rev. Neurosci. 11, 812-822 (2010).

10.1038/nrn292421045860PMC3065184
33

S. F. Traynelis, L. P. Wollmuth, C. J. McBain, F. S. Menniti, K. M. Vance, K. K. Ogden, K. B. Hansen, H. Yuan, S. J. Myers, and R. Dingledine, "Glutamate receptor ion channels: Structure, regulation, and function," Pharmacol. Rev. 62, 405-496 (2010).

10.1124/pr.109.00245120716669PMC2964903
34

M. C. Liberman and S. G. Kujawa, "Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms," Hear. Res. 349, 138-147 (2017).

10.1016/j.heares.2017.01.00328087419PMC5438769
35

Y. H. Huang and D. E. Bergles, "Glutamate transporters bring competition to the synapse," Curr. Opin. Neurobiol. 14, 346-352 (2004).

10.1016/j.conb.2004.05.00715194115
36

R. Pujol and J.-L. Puel, "Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: A review of recent findings," Ann. N. Y. Acad. Sci. 884, 249-254 (1999).

10.1111/j.1749-6632.1999.tb08646.x10842598
37

J.-L. Puel, J. Ruel, C. G. d'Aldin, and R. Pujol, "Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss," Neuroreport, 9, 2109-2114 (1998).

10.1097/00001756-199806220-000379674603
38

H.-B. Zhao, Y. Zhu, and L.-M. Liu, "Excess extracellular K+ causes inner hair cell ribbon synapse degeneration," Commun. Biol. 4, 24 (2021).

10.1038/s42003-020-01532-w33398038PMC7782724
39

D. Bing, S. C. Lee, D. Campanelli, H. Xiong, M. Matsumoto, R. Panford-Walsh, S. Wolpert, M. Praetorius, U. Zimmermann, H. Chu, M. Knipper, L. Rüttiger, and W. Singer, "Cochlear NMDA receptors as a therapeutic target of noise-induced tinnitus," Cell. Physiol. Biochem. 35, 1905-1923 (2015).

10.1159/00037400025871611
40

M. J. Guitton and Y. Dudai, "Blockade of cochlear NMDA receptors prevents long‐term tinnitus during a brief consolidation window after acoustic trauma," Neural Plast. 2007, 080904 (2008).

10.1155/2007/8090418301716PMC2246076
41

J. Ruel, J. Wang, R. Pujol, A. Hameg, M. Dib, and J. L. Puel, "Neuroprotective effect of riluzole in acute noise-induced hearing loss," Neuroreport, 16, 1087- 1090 (2005).

10.1097/00001756-200507130-0001115973153
42

S. Ü. Bezgin, K. K. Uygur, Ç. Gökdoğan, Ç. Elmas, and G. Göktaş, "The effects of riluzole on cisplatin- induced ototoxicity," Int. Arch. Otorhinolaryngol. 23, e267-e275 (2019).

10.1055/s-0038-167665431360245PMC6660296
43

D. M. Martin and Y. Raphael, "Have you heard? Viral- mediated gene therapy restores hearing," Neuron, 75, 188-190 (2012).

10.1016/j.neuron.2012.06.00822841304PMC4502432
44

B. C. Moore, An Introduction to the Psychology of Hearing, 6th ed (Brill, Leiden, 2013), pp. 1-56.

45

L. F. Corns, S. L. Johnson, C. J. Kros, and W. Marcotti, "Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells," Proc. Natl. Acad. Sci. U.S.A., 14918-14923 (2014).

10.1073/pnas.140992011125228765PMC4205606
46

T. Kawase and M. C. Liberman, "Spatial organization of the auditory nerve according to spontaneous discharge rate," J. Comp. Neurol. 319, 312-318 (1992).

10.1002/cne.9031902101381729
47

P. A. Leake and R. L. Snyder, "Topographic organization of the central projections of the spiral ganglion in cats," J. Comp. Neurol. 281, 612-629 (1989).

10.1002/cne.9028104102708585
48

T. Moser and A. Starr, "Auditory neuropathy-neural and synaptic mechanisms," Nat. Rev. Neurol. 12, 135-149 (2016).

10.1038/nrneurol.2016.1026891769
49

J. H. Siegel, "Spontaneous synaptic potentials from afferent terminals in the guinea pig cochlea," Hear. Res. 59, 85-92 (1992).

10.1016/0378-5955(92)90105-V1629051
50

M. A. Rutherford, N. M. Chapochnikov, and T. Moser, "Spike encoding of neurotransmitter release timing by spiral ganglion neurons of the cochlea," J. Neurosci. 32, 4773-4789 (2012).

10.1523/JNEUROSCI.4511-11.201222492033PMC6620899
51

P. X. Joris and P. H. Smith, "The volley theory and the spherical cell puzzle," Neuroscience, 154, 65-76 (2008).

10.1016/j.neuroscience.2008.03.00218424004PMC2486254
52

B. C. Moore, An Introduction to the Psychology of Hearing (Brill, Leiden, 2013), pp. 133-167.

53

R. L. Smith and M. L. Brachman, "Operating range and maximum response of single auditory nerve fibers," Brain Res. 184, 499-505 (1980).

10.1016/0006-8993(80)90817-37353165
54

M. C. Liberman, "Single-neuron labeling in the cat auditory nerve," Science, 216, 1239-1241 (1982).

10.1126/science.70797577079757
55

Q. Song, P. Shen, X. Li, L. Shi, L. Liu, J. Wang, Z. Yu, K. Stephen, S. Aiken, S. Yin, and J. Wang, "Coding deficits in hidden hearing loss induced by noise: the nature and impacts," Sci. Rep. 6, 25200 (2016).

10.1038/srep2520027117978PMC4846864
56

D. K. Ryugo and E. M. Rouiller, "Central projections of intracellularly labeled auditory nerve fibers in cats: Morphometric correlations with physiological properties," J. Comp. Neurol. 271, 130-142 (1988).

10.1002/cne.9027101133385008
57

M. C. Liberman, "Central projections of auditory- nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus," J. Comp. Neurol. 313, 240-258 (1991).

10.1002/cne.9031302051722487
Information
  • Publisher :The Acoustical Society of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 44
  • No :3
  • Pages :240-248
  • Received Date : 2025-02-28
  • Revised Date : 2025-03-17
  • Accepted Date : 2025-03-24