Review Article
J. M. Appler and L. V. Goodrich, "Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly," Prog. Neurobiol. 93, 488-508 (2011).
10.1016/j.pneurobio.2011.01.00421232575PMC3078955L. Robles and M. A. Ruggero, "Mechanics of the mammalian cochlea," Physiol. Rev. 81, 1305-1352 (2001).
10.1152/physrev.2001.81.3.130511427697PMC3590856P. Wangemann, "Supporting sensory transduction: Cochlear fluid homeostasis and the endocochlear potential," J. Physiol. (Lond.) 576, 11-21 (2006).
10.1113/jphysiol.2006.11288816857713PMC1995626A. N. Salt and K. Hirose, "Communication pathways to and from the inner ear and their contributions to drug delivery," Hear. Res. 362, 25-37 (2018).
10.1016/j.heares.2017.12.01029277248PMC5911243P. Wangemann, "K cycling and the endocochlear potential," Hear. Res. 165, 1-9 (2002).
10.1016/S0378-5955(02)00279-412031509A. J. Hudspeth, "Integrating the active process of hair cells with cochlear function," Nat. Rev. Neurosci. 15, 600-614 (2014).
10.1038/nrn378625096182E. Glowatzki and P. A. Fuchs, "Transmitter release at the hair cell ribbon synapse," Nat. Neurosci. 5, 147-154 (2002).
10.1038/nn79611802170R. J. Salvi, D. Ding, A. C. Eddins, S. L. McFadden, and D. Henderson, "Age, noise, and ototoxic agents," in Functional Neurobiology of Aging, edited by P. R. Hof and C. V. Mobbs (Academic Press, San Diego, 2001).
10.1016/B978-012351830-9/50040-8F. E. Musiek and J. A. Baran, The Auditory System: Anatomy, Physiology, and Clinical Correlates (Allyn & Bacon, Boston, 2007), pp. 71-96.
J. Ashmore, "Cochlear outer hair cell motility," Physiol. Rev. 88, 173-210 (2008).
10.1152/physrev.00044.200618195086Y. Raphael and R. A. Altschuler, "Structure and innervation of the cochlea," Brain Res. Bull. 60, 397-422 (2003).
10.1016/S0361-9230(03)00047-912787864J. Prost, C. Barbetta, and J. Joanny, "Dynamical control of the shape and size of stereocilia and microvilli," Biophys. J. 93, 1124-1133 (2007).
10.1529/biophysj.106.09803817526588PMC1929046A. Wright, "Scanning electron microscopy of the human organ of Corti," J. R. Soc. Med. 76, 269-278 (1983).
10.1177/0141076883076004076341584PMC1438986P. Kazmierczak, H. Sakaguchi, J. Tokita, E. M. Wilson-Kubalek, R. A. Milligan, U. Müller, and B. Kachar, "Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells," Nature, 449, 87-91 (2007).
10.1038/nature0609117805295A. J. Hudspeth, "How the ear's works work: Mechanoelectrical transduction and amplification by hair cells," C. R. Biol. 328, 155-162 (2005).
10.1016/j.crvi.2004.12.00315771001L. M. J. Tobón and T. Moser, "Ca2+ regulation of glutamate release from inner hair cells of hearing mice," Proc. Natl. Acad. Sci. U.S.A. 120, e2311539120 (2023).
10.1073/pnas.231153912038019860PMC10710057T. Moser, N. Karagulyan, J. Neef, and L. M. J. Tobón, "Diversity matters-extending sound intensity coding by inner hair cells via heterogeneous synapses," Embo J. 42, e114587 (2023).
10.15252/embj.202311458737800695PMC10690447M. A. Rutherford, H. von Gersdorff, and J. D. Goutman, "Encoding sound in the cochlea: From receptor potential to afferent discharge," J. Physiol. (Lond.), 599, 2527-2557 (2021).
10.1113/JP27918933644871PMC8127127A. Sęk and M. Bukała, "The use of the phase locking information in the human auditory system for frequencies above 5 kHz," Acta. Phys. Pol. A, 123, 1106-1113 (2013).
10.12693/APhysPolA.123.1106J. Zheng, W. Shen, D. Z. Z. He, K. B. Long, L. D. Madison, and P. Dallos, "Prestin is the motor protein of cochlear outer hair cells," Nature, 405, 149-155 (2000).
10.1038/3501200910821263A. Ryan and P. Dallos, "Effect of absence of cochlear outer hair cells on behavioural auditory threshold," Nature, 253, 44-46 (1975).
10.1038/253044a01110747P. Dallos, "Cochlear amplification, outer hair cells and prestin," Curr. Opin. Neurobiol. 18, 370-376 (2008).
10.1016/j.conb.2008.08.01618809494PMC2630119J. J. Guinan Jr, "Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans," Ear Hear. 27, 589-607 (2006).
10.1097/01.aud.0000240507.83072.e717086072Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.-S. LaMantia, and E. White, Nueroscience, 5th ed. (Sinauer Associates, INC., Sunderland, 2012), pp. 277-302.
R. Fettiplace, "Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea," Compr. Physiol. 7, 1197-1227 (2011).
10.1002/j.2040-4603.2017.tb00783.x28915323PMC5658794V. Zampini, S. L. Johnson, C. Franz, M. Knipper, M. C. Holley, J. Magistretti, S. Masetto, and W. Marcotti, "Burst activity and ultrafast activation kinetics of CaV1.3 Ca2+ channels support presynaptic activity in adult gerbil hair cell ribbon synapses," J. Physiol. (Lond.), 591, 3811-3820 (2013).
10.1113/jphysiol.2013.25127223713031PMC3764630S. L. Johnson, "Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding," eLife, 4, e08177 (2015).
10.7554/eLife.0817726544545PMC4709266E. Glowatzki, L. Grant, and P. Fuchs, "Hair cell afferent synapses," Curr. Opin. Neurobiol. 18, 389- 395 (2008).
10.1016/j.conb.2008.09.00618824101PMC2860955A. Brandt, J. Striessnig, and T. Moser, "CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells," J. Neurosci. 23, 10832-10840 (2003).
10.1523/JNEUROSCI.23-34-10832.200314645476PMC6740966V. Zampini, S. L. Johnson, C. Franz, P. Lawrence, M. C. Holley, and W. Marcotti, "Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells," J. Physiol. (Lond.), 588, 187-199 (2010).
10.1113/jphysiol.2009.18191719917569PMC2817446M. A. Rutherford and T. Moser, "The ribbon synapse between type I spiral ganglion neurons and inner hair cells," in The Primary Auditory Neurons of the Mammalian Cochlea, edited by A. Dabdoub, B. Fritzsch, A. N. Popper, and R. R. Fay, Eds. (Springer, New York, 2015).
10.1007/978-1-4939-3031-9_5G. Matthews and P. Fuchs, "The diverse roles of ribbon synapses in sensory neurotransmission," Nat. Rev. Neurosci. 11, 812-822 (2010).
10.1038/nrn292421045860PMC3065184C. J. C. Weisz, S.-P. G Williams, C. S. Eckard, C. B. Divito, D. W. Ferreira, K. N. Fantetti, S. A. Dettwyler, H.-M. Cai, M. E. Rubio, K. Kandler, and R. P. Seal, "Outer hair cell glutamate signaling through type II spiral ganglion afferents activates neurons in the cochlear nucleus in response to nondamaging sounds," J. Neurosci. 41, 2930-2943 (2021).
10.1523/JNEUROSCI.0619-20.202133574178PMC8018895C. J. Weisz, E. Glowatzki, and P. A. Fuchs, "Outer hair cell glutamate signaling through type II spiral ganglion afferents activates neurons in the cochlear nucleus in response to nondamaging sounds," J. Neurosci. 41, 2930-2943 (2021).
10.1523/JNEUROSCI.0619-20.202133574178PMC8018895P. Sterling and G. Matthews, "Structure and function of ribbon synapses," Trends Neurosci. 28, 20-29 (2005).
10.1016/j.tins.2004.11.00915626493T. Frank, D. Khimich, A. Neef, and T. Moser, "Bassoon and the synaptic ribbon organize Ca2+ channels and vesicles to add release sites and promote refilling," Neuron, 68, 724-738 (2010).
10.1016/j.neuron.2010.10.02721092861PMC3005353D. Khimich, R. Nouvian, R. Pujol, S. Dieck, A. Egner, E. D. Gundelfinger, and T. Moser, "Hair cell synaptic ribbons are essential for synchronous auditory signalling," Nature, 434, 889-894 (2005).
10.1038/nature0341815829963L. Sheets, S. Trapani, T. Mo, A. Obholzer, and T. Nicolson, "Ribeye is required for presynaptic CaV1.3a channel localization and afferent innervation of sensory hair cells," Development, 138, 1309-1319 (2011).
10.1242/dev.05945121350006PMC3050663E. D. Gundelfinger, C. Reissner, and C. C. Garner, "Role of bassoon and piccolo in assembly and molecular organization of the active zone," Front. Synaptic Neurosci. 7, 19 (2016).
10.3389/fnsyn.2015.0001926793095PMC4709825S. Shankhwar, M. Schwarz, V. Winkler, and E. D. Gundelfinger, "RIBEYE B-domain is essential for RIBEYE A-domain stability and assembly of synaptic ribbons," Front. Mol. Neurosci. 15, 838311 (2022).
10.3389/fnmol.2022.83831135153673PMC8831697I. Roux, S. Safieddine, R. Nouvian, M. Grati, M.-C. Simmler, A. Bahloul, I. Perfettini, M. Le Gall, P. Rostaing, A. Hamard, and C. Petit, "Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse," Cell, 127, 277-289 (2006).
10.1016/j.cell.2006.08.04017055430J. D. Goutman, "Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function," Proc. Natl. Acad. Sci. 114, 9719- 9724 (2017).
10.1073/pnas.170616011428827351PMC5594669S. Safieddine, A. El-Amraoui, and C. Petit, "The auditory hair cell ribbon synapse: From assembly to function," Annu. Rev. Neurosci. 35, 509-528 (2012).
10.1146/annurev-neuro-061010-11370522715884T. Moser, A. Brandt, and A. Lysakowski, "Hair cell ribbon synapses," Cell Tissue Res. 326, 347-359 (2006).
10.1007/s00441-006-0276-316944206PMC4142044F. Mammano, M. Bortolozzi, S. Ortolano, and F. Anselmi, "Ca2+ signaling in the inner ear," Physiology (Bethesda), 22, 131-144 (2007).
10.1152/physiol.00040.200617420304D. Oliver, A. M. Taberner, H. Thurm, M. Sausbier, C. Arntz, P. Ruth, B. Fakler, and M. C. Liberman, "The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery," J. Neurosci. 26, 6181-6189 (2006).
10.1523/JNEUROSCI.1047-06.200616763026PMC1806704W. C. Chen and R. L. Davis, "Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons," Hear. Res. 222, 89-99 (2006).
10.1016/j.heares.2006.09.00217079103R. Fettiplace and J. Nam, "Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells," Hear. Res. 376, 11-21 (2019).
10.1016/j.heares.2018.11.00230473131PMC6504959D. Oliver, M. Knipper, C. Derst, and B. Fakler, "Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels," J. Neurosci. 23, 2141-2149 (2003).
10.1523/JNEUROSCI.23-06-02141.200312657673PMC6742048P. S. Guth, A. Aubert, A. J. Ricci, and C. H. Norris, "Differential modulation of spontaneous and evoked neurotransmitter release from hair cells: Some novel hypotheses," Hear. Res. 56, 69-78 (1991).
10.1016/0378-5955(91)90155-31685158A. Vavakou, N. P. Cooper, and M. van der Heijden, "The frequency limit of outer hair cell motility measured in vivo," elife, 8, e47667, 2019.
10.7554/eLife.4766731547906PMC6759357F. E. Musiek and J. A. Baran, The Auditory System: Anatomy, Physiology, and Clinical Correlates (Allyn & Bacon, Boston, 2007), pp. 112-149.
A. Walia, C. Lee, J. Hartsock, S. S. Goodman, R. Dolle, A. N. Salt, J. T. Lichtenhan, and M. A. Rutherford, "Reducing auditory nerve excitability by acute antagonism of Ca2+-permeable AMPA receptors," Front. Synaptic Neurosci. 13, 680621 (2021).
10.3389/fnsyn.2021.68062134290596PMC8287724P. A. Fuchs and A. M. Lauer, "Efferent inhibition of the cochlea," Cold Spring Harb. Perspect. Med. 9, a033530 (2019).
10.1101/cshperspect.a03353030082454PMC6496333T. Moser and D. Beutner, "Kinetics of exocytosis and endocytosis at the cochlear inner hair-cell afferent synapse of the mouse," Proc. Natl. Acad. Sci. U.S.A. 97, 883-888 (2000).
10.1073/pnas.97.2.88310639174PMC15425S. L. Johnson, A. Forge, M. Knipper, S. Münkner, and W. Marcotti, "Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses," J. Neurosci. 28, 7670-7678 (2008).
10.1523/JNEUROSCI.0785-08.200818650343PMC2516938W. Liu, M. Luque, R. Glueckert, N. Danckwardt- Lillieström, C. Kämpfe Nordström, A. Schrott- Fischer, and H. Rask-Andersen, "Expression of Na⁺/K⁺-ATPase subunits in the human cochlea: A confocal and super-resolution microscopy study with special reference to auditory nerve excitation and cochlear implantation," Ups. J. Med. Sci. 124, 168- 179 (2019).
10.1080/03009734.2019.165340831460814PMC6758701- Publisher :The Acoustical Society of Korea
- Publisher(Ko) :한국음향학회
- Journal Title :The Journal of the Acoustical Society of Korea
- Journal Title(Ko) :한국음향학회지
- Volume : 44
- No :3
- Pages :231-239
- Received Date : 2024-12-12
- Accepted Date : 2025-01-17
- DOI :https://doi.org/10.7776/ASK.2025.44.3.231