All Issue

2025 Vol.44, Issue 3 Preview Page

Review Article

31 May 2025. pp. 231-239
Abstract
References
1

J. M. Appler and L. V. Goodrich, "Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly," Prog. Neurobiol. 93, 488-508 (2011).

10.1016/j.pneurobio.2011.01.00421232575PMC3078955
2

L. Robles and M. A. Ruggero, "Mechanics of the mammalian cochlea," Physiol. Rev. 81, 1305-1352 (2001).

10.1152/physrev.2001.81.3.130511427697PMC3590856
3

P. Wangemann, "Supporting sensory transduction: Cochlear fluid homeostasis and the endocochlear potential," J. Physiol. (Lond.) 576, 11-21 (2006).

10.1113/jphysiol.2006.11288816857713PMC1995626
4

A. N. Salt and K. Hirose, "Communication pathways to and from the inner ear and their contributions to drug delivery," Hear. Res. 362, 25-37 (2018).

10.1016/j.heares.2017.12.01029277248PMC5911243
5

P. Wangemann, "K cycling and the endocochlear potential," Hear. Res. 165, 1-9 (2002).

10.1016/S0378-5955(02)00279-412031509
6

A. J. Hudspeth, "Integrating the active process of hair cells with cochlear function," Nat. Rev. Neurosci. 15, 600-614 (2014).

10.1038/nrn378625096182
7

E. Glowatzki and P. A. Fuchs, "Transmitter release at the hair cell ribbon synapse," Nat. Neurosci. 5, 147-154 (2002).

10.1038/nn79611802170
8

R. J. Salvi, D. Ding, A. C. Eddins, S. L. McFadden, and D. Henderson, "Age, noise, and ototoxic agents," in Functional Neurobiology of Aging, edited by P. R. Hof and C. V. Mobbs (Academic Press, San Diego, 2001).

10.1016/B978-012351830-9/50040-8
9

F. E. Musiek and J. A. Baran, The Auditory System: Anatomy, Physiology, and Clinical Correlates (Allyn & Bacon, Boston, 2007), pp. 71-96.

10

J. Ashmore, "Cochlear outer hair cell motility," Physiol. Rev. 88, 173-210 (2008).

10.1152/physrev.00044.200618195086
11

Y. Raphael and R. A. Altschuler, "Structure and innervation of the cochlea," Brain Res. Bull. 60, 397-422 (2003).

10.1016/S0361-9230(03)00047-912787864
12

J. Prost, C. Barbetta, and J. Joanny, "Dynamical control of the shape and size of stereocilia and microvilli," Biophys. J. 93, 1124-1133 (2007).

10.1529/biophysj.106.09803817526588PMC1929046
13

A. Wright, "Scanning electron microscopy of the human organ of Corti," J. R. Soc. Med. 76, 269-278 (1983).

10.1177/0141076883076004076341584PMC1438986
14

P. Kazmierczak, H. Sakaguchi, J. Tokita, E. M. Wilson-Kubalek, R. A. Milligan, U. Müller, and B. Kachar, "Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells," Nature, 449, 87-91 (2007).

10.1038/nature0609117805295
15

A. J. Hudspeth, "How the ear's works work: Mechanoelectrical transduction and amplification by hair cells," C. R. Biol. 328, 155-162 (2005).

10.1016/j.crvi.2004.12.00315771001
16

L. M. J. Tobón and T. Moser, "Ca2+ regulation of glutamate release from inner hair cells of hearing mice," Proc. Natl. Acad. Sci. U.S.A. 120, e2311539120 (2023).

10.1073/pnas.231153912038019860PMC10710057
17

T. Moser, N. Karagulyan, J. Neef, and L. M. J. Tobón, "Diversity matters-extending sound intensity coding by inner hair cells via heterogeneous synapses," Embo J. 42, e114587 (2023).

10.15252/embj.202311458737800695PMC10690447
18

M. A. Rutherford, H. von Gersdorff, and J. D. Goutman, "Encoding sound in the cochlea: From receptor potential to afferent discharge," J. Physiol. (Lond.), 599, 2527-2557 (2021).

10.1113/JP27918933644871PMC8127127
19

A. Sęk and M. Bukała, "The use of the phase locking information in the human auditory system for frequencies above 5 kHz," Acta. Phys. Pol. A, 123, 1106-1113 (2013).

10.12693/APhysPolA.123.1106
20

B. C. Moore, An Introduction to the Psychology of Hearing, 6th ed. (Brill, Leiden, 2013), pp. 1-56.

21

J. Zheng, W. Shen, D. Z. Z. He, K. B. Long, L. D. Madison, and P. Dallos, "Prestin is the motor protein of cochlear outer hair cells," Nature, 405, 149-155 (2000).

10.1038/3501200910821263
22

A. Ryan and P. Dallos, "Effect of absence of cochlear outer hair cells on behavioural auditory threshold," Nature, 253, 44-46 (1975).

10.1038/253044a01110747
23

P. Dallos, "Cochlear amplification, outer hair cells and prestin," Curr. Opin. Neurobiol. 18, 370-376 (2008).

10.1016/j.conb.2008.08.01618809494PMC2630119
24

J. J. Guinan Jr, "Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans," Ear Hear. 27, 589-607 (2006).

10.1097/01.aud.0000240507.83072.e717086072
25

Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.-S. LaMantia, and E. White, Nueroscience, 5th ed. (Sinauer Associates, INC., Sunderland, 2012), pp. 277-302.

26

R. Fettiplace, "Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea," Compr. Physiol. 7, 1197-1227 (2011).

10.1002/j.2040-4603.2017.tb00783.x28915323PMC5658794
27

V. Zampini, S. L. Johnson, C. Franz, M. Knipper, M. C. Holley, J. Magistretti, S. Masetto, and W. Marcotti, "Burst activity and ultrafast activation kinetics of CaV1.3 Ca2+ channels support presynaptic activity in adult gerbil hair cell ribbon synapses," J. Physiol. (Lond.), 591, 3811-3820 (2013).

10.1113/jphysiol.2013.25127223713031PMC3764630
28

S. L. Johnson, "Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding," eLife, 4, e08177 (2015).

10.7554/eLife.0817726544545PMC4709266
29

E. Glowatzki, L. Grant, and P. Fuchs, "Hair cell afferent synapses," Curr. Opin. Neurobiol. 18, 389- 395 (2008).

10.1016/j.conb.2008.09.00618824101PMC2860955
30

A. Brandt, J. Striessnig, and T. Moser, "CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells," J. Neurosci. 23, 10832-10840 (2003).

10.1523/JNEUROSCI.23-34-10832.200314645476PMC6740966
31

V. Zampini, S. L. Johnson, C. Franz, P. Lawrence, M. C. Holley, and W. Marcotti, "Elementary properties of CaV1.3 Ca2+ channels expressed in mouse cochlear inner hair cells," J. Physiol. (Lond.), 588, 187-199 (2010).

10.1113/jphysiol.2009.18191719917569PMC2817446
32

M. A. Rutherford and T. Moser, "The ribbon synapse between type I spiral ganglion neurons and inner hair cells," in The Primary Auditory Neurons of the Mammalian Cochlea, edited by A. Dabdoub, B. Fritzsch, A. N. Popper, and R. R. Fay, Eds. (Springer, New York, 2015).

10.1007/978-1-4939-3031-9_5
33

G. Matthews and P. Fuchs, "The diverse roles of ribbon synapses in sensory neurotransmission," Nat. Rev. Neurosci. 11, 812-822 (2010).

10.1038/nrn292421045860PMC3065184
34

C. J. C. Weisz, S.-P. G Williams, C. S. Eckard, C. B. Divito, D. W. Ferreira, K. N. Fantetti, S. A. Dettwyler, H.-M. Cai, M. E. Rubio, K. Kandler, and R. P. Seal, "Outer hair cell glutamate signaling through type II spiral ganglion afferents activates neurons in the cochlear nucleus in response to nondamaging sounds," J. Neurosci. 41, 2930-2943 (2021).

10.1523/JNEUROSCI.0619-20.202133574178PMC8018895
35

C. J. Weisz, E. Glowatzki, and P. A. Fuchs, "Outer hair cell glutamate signaling through type II spiral ganglion afferents activates neurons in the cochlear nucleus in response to nondamaging sounds," J. Neurosci. 41, 2930-2943 (2021).

10.1523/JNEUROSCI.0619-20.202133574178PMC8018895
36

P. Sterling and G. Matthews, "Structure and function of ribbon synapses," Trends Neurosci. 28, 20-29 (2005).

10.1016/j.tins.2004.11.00915626493
37

T. Frank, D. Khimich, A. Neef, and T. Moser, "Bassoon and the synaptic ribbon organize Ca2+ channels and vesicles to add release sites and promote refilling," Neuron, 68, 724-738 (2010).

10.1016/j.neuron.2010.10.02721092861PMC3005353
38

D. Khimich, R. Nouvian, R. Pujol, S. Dieck, A. Egner, E. D. Gundelfinger, and T. Moser, "Hair cell synaptic ribbons are essential for synchronous auditory signalling," Nature, 434, 889-894 (2005).

10.1038/nature0341815829963
39

L. Sheets, S. Trapani, T. Mo, A. Obholzer, and T. Nicolson, "Ribeye is required for presynaptic CaV1.3a channel localization and afferent innervation of sensory hair cells," Development, 138, 1309-1319 (2011).

10.1242/dev.05945121350006PMC3050663
40

E. D. Gundelfinger, C. Reissner, and C. C. Garner, "Role of bassoon and piccolo in assembly and molecular organization of the active zone," Front. Synaptic Neurosci. 7, 19 (2016).

10.3389/fnsyn.2015.0001926793095PMC4709825
41

S. Shankhwar, M. Schwarz, V. Winkler, and E. D. Gundelfinger, "RIBEYE B-domain is essential for RIBEYE A-domain stability and assembly of synaptic ribbons," Front. Mol. Neurosci. 15, 838311 (2022).

10.3389/fnmol.2022.83831135153673PMC8831697
42

I. Roux, S. Safieddine, R. Nouvian, M. Grati, M.-C. Simmler, A. Bahloul, I. Perfettini, M. Le Gall, P. Rostaing, A. Hamard, and C. Petit, "Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse," Cell, 127, 277-289 (2006).

10.1016/j.cell.2006.08.04017055430
43

J. D. Goutman, "Mechanisms of synaptic depression at the hair cell ribbon synapse that support auditory nerve function," Proc. Natl. Acad. Sci. 114, 9719- 9724 (2017).

10.1073/pnas.170616011428827351PMC5594669
44

S. Safieddine, A. El-Amraoui, and C. Petit, "The auditory hair cell ribbon synapse: From assembly to function," Annu. Rev. Neurosci. 35, 509-528 (2012).

10.1146/annurev-neuro-061010-11370522715884
45

T. Moser, A. Brandt, and A. Lysakowski, "Hair cell ribbon synapses," Cell Tissue Res. 326, 347-359 (2006).

10.1007/s00441-006-0276-316944206PMC4142044
46

F. Mammano, M. Bortolozzi, S. Ortolano, and F. Anselmi, "Ca2+ signaling in the inner ear," Physiology (Bethesda), 22, 131-144 (2007).

10.1152/physiol.00040.200617420304
47

D. Oliver, A. M. Taberner, H. Thurm, M. Sausbier, C. Arntz, P. Ruth, B. Fakler, and M. C. Liberman, "The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery," J. Neurosci. 26, 6181-6189 (2006).

10.1523/JNEUROSCI.1047-06.200616763026PMC1806704
48

W. C. Chen and R. L. Davis, "Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons," Hear. Res. 222, 89-99 (2006).

10.1016/j.heares.2006.09.00217079103
49

R. Fettiplace and J. Nam, "Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells," Hear. Res. 376, 11-21 (2019).

10.1016/j.heares.2018.11.00230473131PMC6504959
50

D. Oliver, M. Knipper, C. Derst, and B. Fakler, "Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels," J. Neurosci. 23, 2141-2149 (2003).

10.1523/JNEUROSCI.23-06-02141.200312657673PMC6742048
51

P. S. Guth, A. Aubert, A. J. Ricci, and C. H. Norris, "Differential modulation of spontaneous and evoked neurotransmitter release from hair cells: Some novel hypotheses," Hear. Res. 56, 69-78 (1991).

10.1016/0378-5955(91)90155-31685158
52

A. Vavakou, N. P. Cooper, and M. van der Heijden, "The frequency limit of outer hair cell motility measured in vivo," elife, 8, e47667, 2019.

10.7554/eLife.4766731547906PMC6759357
53

F. E. Musiek and J. A. Baran, The Auditory System: Anatomy, Physiology, and Clinical Correlates (Allyn & Bacon, Boston, 2007), pp. 112-149.

54

A. Walia, C. Lee, J. Hartsock, S. S. Goodman, R. Dolle, A. N. Salt, J. T. Lichtenhan, and M. A. Rutherford, "Reducing auditory nerve excitability by acute antagonism of Ca2+-permeable AMPA receptors," Front. Synaptic Neurosci. 13, 680621 (2021).

10.3389/fnsyn.2021.68062134290596PMC8287724
55

P. A. Fuchs and A. M. Lauer, "Efferent inhibition of the cochlea," Cold Spring Harb. Perspect. Med. 9, a033530 (2019).

10.1101/cshperspect.a03353030082454PMC6496333
56

T. Moser and D. Beutner, "Kinetics of exocytosis and endocytosis at the cochlear inner hair-cell afferent synapse of the mouse," Proc. Natl. Acad. Sci. U.S.A. 97, 883-888 (2000).

10.1073/pnas.97.2.88310639174PMC15425
57

S. L. Johnson, A. Forge, M. Knipper, S. Münkner, and W. Marcotti, "Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses," J. Neurosci. 28, 7670-7678 (2008).

10.1523/JNEUROSCI.0785-08.200818650343PMC2516938
58

W. Liu, M. Luque, R. Glueckert, N. Danckwardt- Lillieström, C. Kämpfe Nordström, A. Schrott- Fischer, and H. Rask-Andersen, "Expression of Na⁺/K⁺-ATPase subunits in the human cochlea: A confocal and super-resolution microscopy study with special reference to auditory nerve excitation and cochlear implantation," Ups. J. Med. Sci. 124, 168- 179 (2019).

10.1080/03009734.2019.165340831460814PMC6758701
59

R. C. Grisham, K. Kindt, K. Finger-Baier, B. Schmid, and T. Nicolson, "Mutations in ap1b1 cause mistargeting of the Na⁺/K⁺-ATPase pump in sensory hair cells," PLoS One, 8, e60866 (2013).

10.1371/journal.pone.006086623593334PMC3625210
60

E. A. Mroz, K. R. Nissim, and C. Lechene, "Rapid resting ion fluxes in goldfish hair cells are balanced by (Na, K)-ATPase," Hear. Res. 70, 22-30 (1993).

10.1016/0378-5955(93)90049-78276730
Information
  • Publisher :The Acoustical Society of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 44
  • No :3
  • Pages :231-239
  • Received Date : 2024-12-12
  • Accepted Date : 2025-01-17