Research Article
S. Haykin, Adaptive Filter Theory, 4th ed. (Prentice Hall, Upper Saddle River, NJ, 2002), pp. 35-93.
C. V. Sinn and J. Gotze, “Comparative stuy of techniques to compute FIR filter weights in adaptive channel equalization,” Proc. IEEE ICASSP, 217-220 (2003).
10.1109/ICASSP.2003.1201657X. Guan, X. Chen, and G. Wu, “QX-LMS adaptive FIR filters for system identification,” Proc. 2nd CISP, 1-5 (2009).
10.1109/CISP.2009.5301497B. Allen and M. Ghavami, Adaptive Array Systems: Fundamentals and Applications (John Wiley & Sons Ltd., West Sussex, England, 2005), pp.1-30.
C. R. South, C. E. Hoppitt, and A. V. Lewis, “Adaptive filters to improve loudspeaker telephone,” Electron. Lett. 15, 673-674 (1979).
10.1049/el:19790478S. Haykin, A. H. Sayed, J. R. Zeidler, P. Yee, and P. C. Wei, “Adaptive tracking of linear time-variant systems by extended RLS algorithms,” IEEE Trans. Signal Process. 45, 1118-1128 (1997).
10.1109/78.575687B. Xi and Y. Liu, “Iterative wiener filter,” Electron. Lett. 49, 343-344 (2013).
10.1049/el.2013.0009M. S. Ahmad, O. Kukrer, and A. Hocanin, “Recursive inverse adaptive filtering algorithm,” Digit. Signal Process. 21, 491-496 (2011).
10.1016/j.dsp.2011.03.001M. S. Salman, O. Kukrer, and A. Hocanin, “Recursive inverse adaptive algorithm: a second-order version, a fast implementation technique, and further results,” Signal Image Viedo Process. 9, 665-673 (2015).
10.1007/s11760-013-0491-9D. Park, B. Jun, and J. Kim, “Fast tracking RLS Algorithm using novel variable forgetting factor with unity zone,” Electron. Lett. 27, 2150-2151 (1991).
10.1049/el:19911331C. Paleologu, J. Benesty, and S. Ciochina, “A robust variable forgetting factor recursive least-squares algorithm for system identification,” IEEE Signal Process. Lett. 15, 597-600 (2008).
10.1109/LSP.2008.2001559K. Li, J. Xiao, J. Xie, and R. Wu, “A novel adaptive variable forgetting factor RLS algorithm,” Proc. ICINC, 228-232 (2022).
10.1109/ICINC58035.2022.00053J. Lim, S. Lee, and H. Pang, “Low complexity adaptive forgetting factor for online sequential extreme learning machine (OS-ELM) for application to nonstationary system estimations,” Neural Comput. 22, 569-576 (2013).
10.1007/s00521-012-0873-x- Publisher :The Acoustical Society of Korea
- Publisher(Ko) :한국음향학회
- Journal Title :The Journal of the Acoustical Society of Korea
- Journal Title(Ko) :한국음향학회지
- Volume : 44
- No :5
- Pages :464-470
- Received Date : 2025-07-29
- Accepted Date : 2025-08-28
- DOI :https://doi.org/10.7776/ASK.2025.44.5.464



The Journal of the Acoustical Society of Korea









