All Issue

2022 Vol.41, Issue 3 Preview Page

Research Article

31 May 2022. pp. 268-277
Abstract
References
1
A. J. Fuentes, M. Suchy, and P. B. Palomo, "The greatest challenge for URN reduction in the oceans by means of engineering," Proc. OCEANS 2019 MTS/ IEEE SEATTLE. IEEE, 1-8 (2019). 10.23919/OCEANS40490.2019.8962779
2
R. Williams, A. J. Wright, E. Ashe, L. K. Blight, R. Bruintjes, R. Canessa, and M. A. Wale, "Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management," Ocean and Coastal Management, 115, 17-24 (2015). 10.1016/j.ocecoaman.2015.05.021
3
A. D. Hawkins and A. N. Popper, "A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates," ICES J. of Marine Sci. 74, 635-651 (2017). 10.1093/icesjms/fsw205
4
C. Erbe, R. Dunlop, and S. Dolman, "Effects of noise on marine mammals," in Handbook of Effects of Anthropogenic Noise on Animals, edited by H. Slabbekoorn, R. J. Dooling, A. N. Popper, R. R. Fay (Springer, New York, 2018). 10.1007/978-1-4939-8574-6_10
5
IMO. M, Guidelines for the reduction of underwater noise from commercial shipping to address adverse impacts on marine life, MEPC, 2014.
6
J. Ahn, G. Kim, K. Kim, Y. Park, H. Ahn, Y. Jung, and J. Yoon, "Performance improvement study of propeller propulsion efficiency and cavitation for the 8800TEU class container" (in Korean), J. Soc. Nav. Arch. Kr. 54, 453-460 (2017). 10.3744/SNAK.2017.54.6.453
7
C. Park, G. Kim, G. Yim, Y. Park, and I. Moon, "A validation study of the model test method for propeller cavitation noise prediction," Ocean Eng. 213, 107655 (2020). 10.1016/j.oceaneng.2020.107655
8
H. Seol, C. Park, and K. Kim, "Numerical prediction of marine propeller BPF noise using FW-H equation and its experimental validation" (in Korean), Trans. Kr. Soc. Noise Vib. Eng. 26, 705-713 (2016). 10.5050/KSNVE.2016.26.6.705
9
I. Park, K. Kim, J. Kim, H. Seol, Y. Park, and J. Ahn, "Numerical study on propeller cavitation and pressure fluctuation of model and full scale ship for a MR tanker" (in Korean), J. Soc. Nav. Arch. Kr. 57, 35-44 (2020). 10.3744/SNAK.2020.57.1.035
10
G. Ku, C. Cheong, I. Park, and H. Seol, "Numerical investigation of tip vortex cavitation inception and noise of underwater propellers of submarine using sequential eulerian-lagrangian approaches," Appl. Sci. 8721 (2020). 10.3390/app10238721
11
J. Cho, G. Ku, C. Cheong, and H. Seol, "Numerical investigation of cavitation noise of the submarine propellers using DDES technique and quadrupole corrected FW-H equation," Proc. INTER-NOISE and NOISE-CON Cong. and Conf. 4376-4381 (2020).
12
G. Ku, S. Ryu, and C. Cheong, "Numerical investigation into cavitation flow noise of hydrofoil using quadrupole- corrected Ffowcs Williams and Hawkings equation" (in Korean), J. Acoust. Soc. Kr. 37, 263-270 (2018).
13
G. Ku, J. Cho, C.Cheong and H. Seol, "Numerical investigation of tip-vortex cavitation noise of submarine propellers using hybrid computational hydro-acoustic approach," Ocean Eng. 238, 109693 (2021). 10.1016/j.oceaneng.2021.109693
14
J. Ha, G. Ku, J. Cho, C. Cheong, and H. Seol, "Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers" (in Korean), J. Acoust. Soc. Kr. 40, 261-269 (2021).
15
J. Jeong, I. Kim, D. Yoon, S. Kim, and D. You, "Numerical analysis of underwater radiated noise over a marine propeller" (in Korean), J. Comput. Fluids Eng. 26, 17-24 (2021). 10.6112/kscfe.2021.26.1.017
16
K. Fujiyama and Y. Nakashima, "Numerical prediction of acoustic noise level induced by cavitation on ship propeller at behind-hull condition," Proceedings of the 5th Symposium on Marine Propulsors, SMP. 17, 739-744 (2017).
17
S. Kim, C. Cheong, W. Park, and H. Seol, "Numerical investigation of cavitation flow around hydrofoil and its flow noise" (in Korean), Trans. Kr. Soc. Noise Vib. Eng. 26, 141-147 (2016). 10.5050/KSNVE.2016.26.2.141
18
S. Kim, C. Cheong, and W. Park, "Numerical investigation into the effects of viscous flux on cavitation flow around hydrofoil" (in Korean), Trans. Kr. Soc. Noise Vib. Eng. 721-729 (2017). 10.5050/KSNVE.2017.27.6.721
19
S. Kim, C. Cheong, and W. Park, "Numerical investigation into effects of viscous flux vectors on hydrofoil cavitation flow and its radiated flow noise," Appl. Sci. 8, 289 (2018). 10.3390/app8020289
20
M. Ha, C. Cheong, H. Seol, B. Paik, M. Kim, and Y. Jung, "Development of efficient and accurate parallel computation algorithm using moving overset grids on background multi-domains for complex two-phase flows," Appl. Sci. 8, 1937 (2018). 10.3390/app8101937
21
S. Kim, C. Cheong, and W. Park, "Numerical investigation on cavitation flow of hydrofoil and its flow noise with emphasis on turbulence models," AIP Advances, 7, 065114 (2017). 10.1063/1.4989587
22
G. Ku, C. Cheong, S. Kim, Cong-Tu Ha, and W. Park, "Numerical study on cavitation flow and noise in the flow around a Clark-Y Hydrofoil" (in Korean), Trans. Kr. Soc. Mech. Eng. A 41, 87-94 (2017).
23
S. Kim, C. Cheong, and W. Park, "Numerical investigation into effects of viscous flux vectors on hydrofoil cavitation flow and its radiated flow noise," Appl. Sci. 8, 289 (2018). 10.3390/app8020289
24
G. Ku, C. Cheong, I. Park, and H. Seol, "Numerical investigation of blade tip vortex cavitation noise using Reynolds-averaged Navier-Stokes simulation and bubble dynamics model" (in Korean), J. Acoust. Soc. Kr. 39, 77-86 (2020).
25
B. Paik, K. Kim, K. Kim, and Y. Park, "PIV Measurements of rudder inflow induced by propeller revolution in hull wake"(in Korean), J. Soc. Nav. Arch. Kr. 48, 128-133 (2011). 10.3744/SNAK.2011.48.2.128
26
A. Posa, R. Broglia, and E. Balaras, "The wake flow downstream of a propeller-rudder system," International J. Heat and Fluid Flow, 87, 108765 (2021). 10.1016/j.ijheatfluidflow.2020.108765
27
H. Jeong, J. Lee, Y. Kim, and H. Seol, "Estimation of the noise source level of a commercial ship using on- board pressure sensors," Appl. Sci. 11, 1243 (2021). 10.3390/app11031243
28
M. S. Gritskevich, A. V. Garbaruk, J. Schütze, and F. R. Menter, "Development of DDES and IDDES formulations for the k-ω shear stress transport model." Flow, Turbulence and Combustion, 88, 431-449 (2012). 10.1007/s10494-011-9378-4
29
T. Ikeda, S. Enomoto, K. Yamamoto, and K. Amemiya, "Quadrupole corrections for the permeable- surface Ffowcs Williams-Hawkings equation," AIAA J. 55, 2307-2320 (2017). 10.2514/1.J055328
30
L. V. Lopes, D. D. Boyd Jr, D. M. Nark, and K. E. Wiedemann, "Identification of spurious signals from permeable Ffowcs Williams and Hawkings surfaces," AHS. Int. Annual Forum and Technology Display, NF1676L-25336 (2017).
31
H. Seol, "Time domain method for the prediction of pressure fluctuation induced by propeller sheet cavitation: Numerical simulations and experimental validation", Ocean Eng. 72, 287-296 (2013). 10.1016/j.oceaneng.2013.06.030
Information
  • Publisher :The Acoustical Society of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 41
  • No :3
  • Pages :268-277
  • Received Date : 2022-03-07
  • Accepted Date : 2022-04-19