Research Article
A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, "An overview of matched field methods in ocean acoustics," IEEE. J. Oceanic Eng. 18, 401-424 (1993).
10.1109/48.262292H. P. Bucker, "Use of calculated sound fields and matched-field detection to locate sound sources in shallow water," J. Acoust. Soc. Am. 59, 368-373 (1976).
10.1121/1.380872M. Park, Y. Choo, J. Choi, and K. Lee, "Reformulation of frequency-difference matched-field processor for high-frequency known-source localization," J. Acoust. Soc. Am. 154, 948-967 (2023).
10.1121/10.002058937581405G. Byun, F. H. Akins, K. L. Gemba, H. C. Song, and W. A. Kuperman, "Multiple constraint matched field processing tolerant to array tilt mismatch," J. Acoust. Soc. Am. 147, 1231-1238 (2020).
10.1121/10.000078432113311J-S. Park, J. Park, S-U. Son, H. Bae, and K. Lee, "Characteristics of source localization with horizontal line array using frequency-difference autoproduct in the East Sea environment" (in Korean), J. Acoust. Soc. Kr. 43, 29-38 (2023).
S. D. Chuprov, "Interference structure of a sound field in a layered ocean," in Handbook of Acoustics of the Ocean, edited by L. M. Breakhovskikh and I. B. Andreevoi (Nauka, Moscow, 1982).
G. A. Grachev, "Theory of acoustic field invariants in layered waveguide," J. Acoust. Phys. 39, 67-71 (1993).
G. L. D'Spain and W. A. Kuperman, "Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth," J. Acoust. Soc. Am. 106, 2454-2468 (1999).
10.1121/1.428124K. A. SØstrand, "Range localization of 10-100 km explosions by means of an endire array and a waveguide invariant," IEEE J. Ocean. Eng. 30, 207-212 (2005).
10.1109/JOE.2004.834598G. Byun and H. C. Song, "Adaptive array invariant," J. Acoust. Soc. Am. 103, 925-933 (2020).
10.1121/10.000176832873004F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (Springer, New York, 2011), Chap. 2.
10.1007/978-1-4419-8678-8G. Byun, H. C. Song, and C. Cho, "Adaptive array invariant in range-dependent environments with variable bathymetry," J. Acoust. Soc. Am. 149, 1363-1370 (2021).
10.1121/10.000356233639832K. L. Cockrell and H. Schmidt, "A modal Wentzel-Kramers-Brillouin approach to calculating the waveguide invariant for non-ideal waveguides," J. Acoust. Soc. Am. 130, 72-83 (2011).
10.1121/1.359223621786879G. Byun and H. C. Song, "The waveguide invariant for a Pekeris waveguide," J. Acoust. Soc. Am. 151, 846-851 (2022).
10.1121/10.000938735232081R. Emmetiere, J. Bonnel, M. Gehant, X. Cristol, and T. Chonavel, "Understanding deep-water striation patterns and predicting the waveguide invariant as a distribution depending on range and depth," J. Acoust. Soc. Am. 143, 3444-3454 (2018).
10.1121/1.504098229960502H. C. Song, C. Cho, W. S. Hodgkiss, S. Nam, S. Kim, and B. Kim, "Underwater sound channel in the northeastern East China Sea," Ocean Eng. 147, 370-374 (2018).
10.1016/j.oceaneng.2017.10.045M. B. Poter, "The acoustics toolbox," http://oalib.hlsresearch.com/AcousticsToolbox/, (Last viewed 10 May 2024).
- Publisher :The Acoustical Society of Korea
- Publisher(Ko) :한국음향학회
- Journal Title :The Journal of the Acoustical Society of Korea
- Journal Title(Ko) :한국음향학회지
- Volume : 43
- No :4
- Pages :466-474
- Received Date : 2024-05-23
- Accepted Date : 2024-07-03
- DOI :https://doi.org/10.7776/ASK.2024.43.4.466