All Issue

2024 Vol.43, Issue 6 Preview Page

Research Article

30 November 2024. pp. 624-629
Abstract
References
1

C. Davila, "An efficient recursive total least squares algorithm for FIR adaptive filtering," IEEE Trans Signal Process, 42, 268-280 (1994).

10.1109/78.275601
2

N. Choi, J. Lim, J. Song, and K. Sung, "Adaptive system identification using an efficient recursive total least squares algorithm," J. Acoust. Soc. Kr. 22, 93-100 (2003).

3

L. Lu, H. Zhao, and B. Champagne, "Diffusion total least-squares algorithm with multi-node feedback," Signal Processing, 153, 243-254 (2018).

10.1016/j.sigpro.2018.07.025
4

L. Li, H. Zhao, and S. Lv, "Diffusion recursive total least square algorithm over adaptive networks and performance analysis," Signal Processing, 182, 1-10 (2021).

10.1016/j.sigpro.2020.107954
5

J. Lim and H. Pang, "l1-regularized recursive total least squares based sparse system identification for the error-in-variables," SpringerPlus, 5, 1-9 (2016).

10.1186/s40064-016-3120-627652035PMC5007238
6

A. H. Sayed, Fundamentals of Adaptive Filtering (Wiley, New York, 2003), pp. 212-280.

7

S. C. Douglas, "Numerically - robust o(n2) recursive least-squares estimation using least squares prewhitening," Proc. ICASSP, 412-415 (2000).

8

J. Lim, Y. Pyeon, and S. Kim, "L1 norm-recursive least squares algorithm for the robust sparse acoustic communication channel estimation," J. Acoust. Soc. Kr. 22, 32-37 (2020).

9

A. Hasso, K. Jacksi, and K. Smith, "Effect of quantization error and SQNR on the ADC using truncating method to the nearest integer bit," Proc. ICOASE, 112-117 (2019).

10.1109/ICOASE.2019.8723801
Information
  • Publisher :The Acoustical Society of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 43
  • No :6
  • Pages :624-629
  • Received Date : 2024-09-20
  • Revised Date : 2024-10-21
  • Accepted Date : 2024-11-06