All Issue

2025 Vol.44, Issue 5 Preview Page

Research Article

30 September 2025. pp. 450-457
Abstract
References
1

M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Ocean. Eng. 21, 125-136 (1996).

10.1109/48.486787
2

H. Saheban and Z. Kordrostami, “Hydrophones, fundamental features, design considerations, and various structures: A review,” Sens. Actuators A: Phys. 329, 112790 (2021).

10.1016/j.sna.2021.112790
3

J. L. Butler and C. H. Sherman, Transducers and Arrays for Underwater Sound, 2nd ed (Springer, Cham, Switzerland, 2016), pp. 66-297.

4

L. Wei, Y. Lan, and G. Shi, “Slot piezoelectric ring deep ocean hydrophone,” Acta acust. 42, 83-90 (2017).

5

J. Chen, C. Gong, G. Yue, L. Zhang, X. Wang, Z. Huo, and Z. Dong, “Structural optimization and performance of a low-frequency double-shell type-iv flexural hydroacoustic transducer,” Sensors, 24, 4746 (2024).

10.3390/s2414474639066142PMC11280574
6

R. Guo, S. Li, D. Ahn, T. Han, J. Chen, and W. Cao, “Comprehensive analysis of Mn: PIN-PMN-PT single crystals for Class IV flextensional transducer,” Ceram. Int. 44, 2864-2868 (2018).

10.1016/j.ceramint.2017.11.033
7

D. Li, Y. Lan, T. Zhou, and W. Lu, “Numerical and experimental investigation of a negative-curvature variable-shell flextensional transducer,” J. Acoust. Soc. Am. 153, 505-516 (2023).

10.1121/10.0016884
8

J. Zheng, S. Li, and B. Wang, “Design of low- frequency broadband flextensional transducers based on combined particle swarm optimization and finite element method,” Smart Mater. Struct. 30, 105002 (2021).

10.1088/1361-665X/ac1b3c
9

R. Guo, S. Li, T. Li, X. Sun, L. Lin, and S. Sun, “Analysis and design of low frequency and high power flextensional transducer with double-grooves,” Appl. Acoust. 149, 25-31 (2019).

10.1016/j.apacoust.2019.01.016
10

K. P. B. Moosad, P. Krishnakumar, and G. Chandrashekar, “Frequency fine-tuning in Class IV flextensional transducers,” Appl. Acoust. 68, 1280-1285 (2007).

10.1016/j.apacoust.2006.06.009
11

A. C. Hladky-Hennion, A. E. Uzgur, and R. E. Newnham, “Monolithic class IV type flextensional transducers,” J. Electroceramics. 20, 139-144 (2008).

10.1007/s10832-007-9121-7
12

S. Chen and Y. Lan, “Broadband flextensional transducer with major axis lengthened,” Acta acust. 36, 638-644 (2011).

13

T. Zhou, Y. Lan, Q. Zhang, J. Yuan, S. Li, and W. Lu, “A conformal driving class IV flextensional transducer,” Sensors, 18, 2102 (2018).

10.3390/s1807210229966344PMC6069496
14

W. W. Au and M. C. Hastings, Principles of Marine Bioacoustics (Springer, New York, 2008), pp. 30.

15

D. A. DeAngelis and G. W. Schulze, “Performance of PZT8 versus PZT4 piezoceramic materials in ultrasonic transducers,” Phys. Procedia. 87, 85-92 (2016).

10.1016/j.phpro.2016.12.014
16

H. Kim and Y. Roh, “Optimal design of a barrel stave flextensional transducer,” Jap. J. Appl. Phys. 48, 7S (2009).

10.1143/JJAP.48.07GL07
17

K. Kang and Y. Roh, “Optimal design of a flextensional transducer considering all the cross-coupled effects of the design variables,” Trans. Korean Soc. Noise Vib. Eng. 13, 364-374 (2003).

10.5050/KSNVN.2003.13.5.364
18

H. Kim and Y. Roh, “Design and fabrication of a wideband Tonpilz transducer with a void head mass.” Sens. Actuators A: Phys. 239, 137-143 (2016).

10.1016/j.sna.2016.01.029
19

H. W. Altland, “Regression analysis: Statistical modeling of a response variable.” Technometrics, 41, 367-368 (1999).

10.1080/00401706.1999.10485936
20

Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti, “Scatter search and local NLP solvers: A multistart framework for global optimization,” INFORMS J. Comput. 19, 328-340 (2016).

10.1287/ijoc.1060.0175
Information
  • Publisher :The Acoustical Society of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 44
  • No :5
  • Pages :450-457
  • Received Date : 2025-07-15
  • Accepted Date : 2025-09-02