Research Article
M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Ocean. Eng. 21, 125-136 (1996).
10.1109/48.486787H. Saheban and Z. Kordrostami, “Hydrophones, fundamental features, design considerations, and various structures: A review,” Sens. Actuators A: Phys. 329, 112790 (2021).
10.1016/j.sna.2021.112790J. L. Butler and C. H. Sherman, Transducers and Arrays for Underwater Sound, 2nd ed (Springer, Cham, Switzerland, 2016), pp. 66-297.
L. Wei, Y. Lan, and G. Shi, “Slot piezoelectric ring deep ocean hydrophone,” Acta acust. 42, 83-90 (2017).
J. Chen, C. Gong, G. Yue, L. Zhang, X. Wang, Z. Huo, and Z. Dong, “Structural optimization and performance of a low-frequency double-shell type-iv flexural hydroacoustic transducer,” Sensors, 24, 4746 (2024).
10.3390/s2414474639066142PMC11280574R. Guo, S. Li, D. Ahn, T. Han, J. Chen, and W. Cao, “Comprehensive analysis of Mn: PIN-PMN-PT single crystals for Class IV flextensional transducer,” Ceram. Int. 44, 2864-2868 (2018).
10.1016/j.ceramint.2017.11.033D. Li, Y. Lan, T. Zhou, and W. Lu, “Numerical and experimental investigation of a negative-curvature variable-shell flextensional transducer,” J. Acoust. Soc. Am. 153, 505-516 (2023).
10.1121/10.0016884J. Zheng, S. Li, and B. Wang, “Design of low- frequency broadband flextensional transducers based on combined particle swarm optimization and finite element method,” Smart Mater. Struct. 30, 105002 (2021).
10.1088/1361-665X/ac1b3cR. Guo, S. Li, T. Li, X. Sun, L. Lin, and S. Sun, “Analysis and design of low frequency and high power flextensional transducer with double-grooves,” Appl. Acoust. 149, 25-31 (2019).
10.1016/j.apacoust.2019.01.016K. P. B. Moosad, P. Krishnakumar, and G. Chandrashekar, “Frequency fine-tuning in Class IV flextensional transducers,” Appl. Acoust. 68, 1280-1285 (2007).
10.1016/j.apacoust.2006.06.009A. C. Hladky-Hennion, A. E. Uzgur, and R. E. Newnham, “Monolithic class IV type flextensional transducers,” J. Electroceramics. 20, 139-144 (2008).
10.1007/s10832-007-9121-7S. Chen and Y. Lan, “Broadband flextensional transducer with major axis lengthened,” Acta acust. 36, 638-644 (2011).
T. Zhou, Y. Lan, Q. Zhang, J. Yuan, S. Li, and W. Lu, “A conformal driving class IV flextensional transducer,” Sensors, 18, 2102 (2018).
10.3390/s1807210229966344PMC6069496D. A. DeAngelis and G. W. Schulze, “Performance of PZT8 versus PZT4 piezoceramic materials in ultrasonic transducers,” Phys. Procedia. 87, 85-92 (2016).
10.1016/j.phpro.2016.12.014H. Kim and Y. Roh, “Optimal design of a barrel stave flextensional transducer,” Jap. J. Appl. Phys. 48, 7S (2009).
10.1143/JJAP.48.07GL07K. Kang and Y. Roh, “Optimal design of a flextensional transducer considering all the cross-coupled effects of the design variables,” Trans. Korean Soc. Noise Vib. Eng. 13, 364-374 (2003).
10.5050/KSNVN.2003.13.5.364H. Kim and Y. Roh, “Design and fabrication of a wideband Tonpilz transducer with a void head mass.” Sens. Actuators A: Phys. 239, 137-143 (2016).
10.1016/j.sna.2016.01.029- Publisher :The Acoustical Society of Korea
- Publisher(Ko) :한국음향학회
- Journal Title :The Journal of the Acoustical Society of Korea
- Journal Title(Ko) :한국음향학회지
- Volume : 44
- No :5
- Pages :450-457
- Received Date : 2025-07-15
- Accepted Date : 2025-09-02
- DOI :https://doi.org/10.7776/ASK.2025.44.5.450



The Journal of the Acoustical Society of Korea









