Research Article
G. Ciaburro and G. Iannace, “Improving smart cities safety using sound events detection based on deep neural network algorithms,” Informatics, 7, 23 (2020).
10.3390/informatics7030023A. H. Yuh and S. J. Kang, “Real-time sound event classification for human activity of daily living using deep neural network,” Proc. IEEE iThings, GreenCom, CPSCom, SmartData, Cybermatics, 83-88 (2021).
10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00027H. G. Kim and G. Y. Kim, “Deep neural network- based indoor emergency awareness using contextual information from sound, human activity, and indoor position on mobile device,” IEEE Trans. Consum. Electron. 66, 271-278 (2020).
10.1109/TCE.2020.3015197P. Giannakopoulos, A. Pikrakis, and Y. Cotronis, “Improving post-processing of audio event detectors using reinforcement learning,” IEEE Access, 10, 84398–84404 (2022).
10.1109/ACCESS.2022.3197907D. de Benito-Gorrón, D. Ramos, and D. T. Toledano, “A multi-resolution CRNN-based approach for semi- supervised sound event detection in DCASE 2020 challenge,” IEEE Access, 9, 89029-89042 (2021).
10.1109/ACCESS.2021.3088949J. Nam and S. W. Park, “Boosting principal frequency based data augmentation for sound event detection” (in Korean), J. Korean Inst. Electron. Eng. 77-83 (2024).
10.5573/ieie.2024.61.7.77N. K. Kim and H. K. Kim, “Self-training with noisy student model and semi-supervised loss function for DCASE 2021 challenge task 4,” DCASE, Tech. Rep., 2021.
L. Lin, X. Wang, H. Liu, and Y. L. Qian, “Guided learning convolution system for dcase 2019 task 4,” arXiv preprint arXiv:1909.06178 (2019).
10.33682/53ed-z889C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception architecture for computer vision,” Proc. IEEE CVPR, 2818-2826 (2016).
10.1109/CVPR.2016.308W. Lim, S. Suh, and Y. Jeong, “Weakly labeled semi-supervised sound event detection using CRNN with inception module,” Proc. DCASE, 74-77 (2018).
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE CVPR, 770-778 (2016).
10.1109/CVPR.2016.90G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” Proc. IEEE CVPR, 4700-4708 (2017).
10.1109/CVPR.2017.243G. Huang, S. Liu, L. Van Der Maaten, and K. Q. Weinberger, “CondenseNet: An efficient DenseNet using learned group convolutions,” Proc. IEEE CVPR, 2752-2761 (2018).
10.1109/CVPR.2018.00291N. Turpault, R. Serizel, A. Shah, and J. Salamon, “Sound event detection in domestic environments with weakly labeled data and soundscape synthesis,” Proc. DCASE, Workshop, 253-257 (2019).
10.33682/006b-jx26Ç. Bilen, G. Ferroni, F. Tuveri, J. Azcarreta, and S. Krstulović, “A framework for the robust evaluation of sound event detection,” Proc. IEEE ICASSP, 61-65 (2020).
10.1109/ICASSP40776.2020.9052995DCASE Community, https://dcase.community/challenge2023/task-sound-event-detection-with-weak-labels-and-synthetic-soundscapes-results#task-description, (Last viewed April 15, 2025).
- Publisher :The Acoustical Society of Korea
- Publisher(Ko) :한국음향학회
- Journal Title :The Journal of the Acoustical Society of Korea
- Journal Title(Ko) :한국음향학회지
- Volume : 44
- No :5
- Pages :489-495
- Received Date : 2025-05-26
- Revised Date : 2025-07-07
- Accepted Date : 2025-07-20
- DOI :https://doi.org/10.7776/ASK.2025.44.5.489



The Journal of the Acoustical Society of Korea









