All Issue

2025 Vol.44, Issue 5 Preview Page

Research Article

30 September 2025. pp. 516-523
Abstract
References
1

G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” IEEE Trans on speech and audio process. 10, 293-302 (2002).

10.1109/TSA.2002.800560
2

A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney, “Content-based music information retrieval: Current directions and future challenges,” Proc. IEEE, 96, 668-696 (2008).

10.1109/JPROC.2008.916370
3

D. Bogdanov, N. Wack, E. Gómez Gutiérrez, S. Gulati, P. H. Boyer, O. Mayor, G. R. Trepat, J. Salamon, J. R. Z. González, and X. Serra, “Essentia: An audio analysis library for music information retrieval,” Proc. 14th ISMIR, 493-498 (2013).

4

A. Van Den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music recommendation,” Proc. NIPS, 26 (2013).

5

K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional recurrent neural networks for music classification,” Proc. ICASSP, 2392-2396 (2017).

10.1109/ICASSP.2017.7952585
6

Y. Xu and W. Zhou, “A deep music genres classification model based on CNN with Squeeze & Excitation Block,” Proc. IEEE APSIPA ASC. 332- 338 (2020).

7

A. Ferraro, D. Bogdanov, X. S. Jay, H. Jeon, and J. Yoon, “How low can you go? Reducing frequency and time resolution in current CNN architectures for music auto-tagging,” Proc. 28th EUSIPCO, 131-135 (2021).

10.23919/Eusipco47968.2020.9287769
8

D. Kim, T. T. Sung, Y. S. Cho, G. Lee, and B. C. Sohn, “A single predominant instrument recognition of polyphonic music using CNN-based timbre analysis,” Int. J. Eng. Technol. 7, 590-595 (2018).

10.14419/ijet.v7i3.34.19388
9

S. Joshi, T. Jain, and N. Nair, “Emotion based music recommendation system using LSTM-CNN architecture,” Proc. IEEE ICCCNT. 01-06 (2021).

10.1109/ICCCNT51525.2021.9579813
10

C. Liu, L. Feng, G. Liu, H. Wang, and S. Liu, “Bottom-up broadcast neural network for music genre classification,” Multimed. Tools Appl. 80, 7313-7331 (2021).

10.1007/s11042-020-09643-6
11

J. Lee and J. Nam, “Multi-level and multi-scale feature aggregation using pretrained convolutional neural networks for music auto-tagging,” IEEE Signal Processing Letters, 24, 1208-1212 (2017).

10.1109/LSP.2017.2713830
12

S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. Torr, “Res2Net: A new multi- scale backbone architecture,” IEEE Trans. Pattern Anal. Mach. Intell. 43, 652-662 (2019).

10.1109/TPAMI.2019.2938758
13

I. Ikhsan, L. Novamizanti, and I. N. A. Ramatryana, “Automatic musical genre classification of audio using Hidden Markov Model,” Proc. 2nd ICoICT, 397-402 (2014).

10.1109/ICoICT.2014.6914095
14

FMA: A Dataset for Music Analysis, https://arxiv.org/abs/1612.01840, (Last viewed September 16, 2025).

15

A. Ferraro, Y. Kim, S. Lee, B. Kim, N. Jo, S. Lim, S. Lim, J. Jang, S. Kim, and X. Serra, “Melon playlist dataset: A public dataset for audio-based playlist generation and music tagging,” Proc. IEEE ICASSP, 536-540 (2021).

10.1109/ICASSP39728.2021.9413552
16

S.-H. Cho, Y. Park, and J. Lee, “Effective music genre classification using late fusion convolutional neural network with multiple spectral features,” Proc. IEEE ICCE-Asia, 1-4 (2022).

10.1109/ICCE-Asia57006.2022.9954732
17

S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li, N. Kanda, T. Yoshioka, X. Xiao, J. Wu, L. Zhou, S. Ren, Y. Qian , Y. Qian, J. Wu, M. Zeng, X. Yu, and F. Wei, “WavLM: Large-scale self-supervised pre- training for full stack speech processing,” IEEE J. Sel. Top. Signal Process. 16, 1505-1518 (2022).

10.1109/JSTSP.2022.3188113
18

Y. Yi, K.-Y. Chen, and H.-Y.Gu, “Mixture of CNN experts from multiple acoustic feature domain for music genre classification,” Proc. IEEE APSIPA ASC. 1250-1255 (2019).

10.1109/APSIPAASC47483.2019.9023314
19

Md. N. A. Siddiquee, Md. A. Hossain, and F. Wahida, “An effective machine learning approach for music genre classification with mel spectrograms and Knn,” Proc. IEEE IC3S, 1-4 (2013).

10.1109/IC3S57698.2023.10169397
Information
  • Publisher :The Acoustical Society of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 44
  • No :5
  • Pages :516-523
  • Received Date : 2025-08-06
  • Revised Date : 2025-08-29
  • Accepted Date : 2025-08-30