All Issue

2024 Vol.43, Issue 1 Preview Page

Research Article

31 January 2024. pp. 78-88
Abstract
References
1
R. J. Urick, Principles of Underwater Sound, 3rd Edition (McGraw-Hill, New York, 1983), pp. 332-345.
2
R. O. Nielsen, Sonar Signal Processing (Artech House, Norwood, 1991), pp. 95, 173-175.
3
A. Kummert, "Fuzzy technology implemented in sonar systems," IEEE J. Ocean. Eng. 18, 483-490 (1993). 10.1109/48.262298
4
J. S. Kim, S. B. Hwang, and C. M. Lee, "A DEMON processing robust to interference of tonals" (in Korean), J. Acoust. Soc. Kr. 31, 384-390 (2012). 10.7776/ASK.2012.31.6.384
5
M. J. Cheong, S. B. Hwang, S. W. Lee, and J. S. Kim, "Multiband enhancement for DEMON processing algorithms" (in Korean), J. Acoust. Soc. Kr. 32, 138-146 (2013). 10.7776/ASK.2013.32.2.138
6
S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, "Image segmentation using deep learning: a survey," IEEE Trans. Pattern Anal. Mach. Intell. 44, 3523-3542 (2021). 10.1109/TPAMI.2021.305996833596172
7
F. Lateef and Y. Ruichek, "Survey on semantic segmentation using deep learning techniques," Neurocomputing, 338, 321-348 (2019). 10.1016/j.neucom.2019.02.003
8
W. Shin, H. Sul, J. W. Choi, T.-L. Song, D.-S. Kim, and H. Ko, "DeepNetwork-based segmentation model for low detectable underwater target tracking" (in Korean), J. Inst. Electron. Info. Eng. 60, 27-36 (2023). 10.5573/ieie.2023.60.1.27
9
C. Jin, M. Kim, S. Jang, and D.-G. Paeng, "Semantic segmentation-based whistle extraction of Indo-Pacific Bottlenose Dolphin residing at the coast of Jeju island," Ecological Indicators, 137, 108792 (2022). 10.1016/j.ecolind.2022.108792
10
R. O. Nielsen, "Cramer-Rao lower bounds for sonar broad-band modulation parameters," IEEE J. Ocean. Eng. 24, 285-290 (1999). 10.1109/48.775290
11
M. F. McKenna, D. Ross, S. M. Wiggins, and J. A. Hildebrand, "Underwater radiated noise from modern commercial ships," J. Acoust. Soc. Am. 131, 92-103 (2012). 10.1121/1.366410022280574
12
O. Ronneberger, P. Fischer, and T. Brox, "U-Net: convolutional networks for biomedical image segmentation," Proc. MICCAI, 234-241 (2015). 10.1007/978-3-319-24574-4_28
13
Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, "UNet++: a nested u-net architecture for medical image segmentation," Proc. DLMIA, 3-11 (2018). 10.1007/978-3-030-00889-5_132613207PMC7329239
14
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, "Encoder-decoder with atrous separable convolution for semantic image segmentation," Proc. ECCV, 801-818 (2018). 10.1007/978-3-030-01234-2_49
15
F. Chollet, "Xception: deep learning with depthwise separable convolutions," Proc. CVPR, 1251-1258 (2017). 10.1109/CVPR.2017.195
16
M. Irfan, Z. Jiangbin, S. Ali, M. Iqbal, Z. Masood, and U. Hamid, "DeepShip: an underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification," Expert Syst. Appl. 183, 115270 (2021). 10.1016/j.eswa.2021.115270
Information
  • Publisher :The Acoustical Society of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 43
  • No :1
  • Pages :78-88
  • Received Date : 2023-09-04
  • Revised Date : 2023-11-23
  • Accepted Date : 2023-11-24