All Issue

2021 Vol.40, Issue 4 Preview Page

Research Article

July 2021. pp. 337-346
D. Y. Oh and I. D. Yun, "Residual error based on anomaly detection using auto-encoder in SMD machine sound," Sensors. 18, 1308 (2018). 10.3390/s18051308
K. Suefusa, T. Nishida, H. Purohit, R. Tanabe, T. endo, and Y. Kawaguchi, "Anomalous sound detection based on interpolation deep neural network," Proc. IEEE ICASP. 271-275 (2020). 10.1109/ICASSP40776.2020.9054344
R. Lang, R. Lu, C. Zhao, H. Qin, and G. Liu, "Graph- based semi-supervised one class support vector machine for detecting abnormal lung sounds," Applied Mathematics and Computation, 364, 124487 (2020). 10.1016/j.amc.2019.06.001
R. Banerjee and A. Ghose, "A semi-supervised approach for identifying abnromal heart sounds using variational autoencoder," Proc. IEEE ICASP. 1249-1253 (2020). 10.1109/ICASSP40776.2020.9054632
G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, "Deep learning for anomaly detection: A review," ACM Computing Surveys (CSUR), 54, 1-38 (2021). 10.1145/3439950
L. Ruff, R. A. Vandermeulen, L. Deecke, S. A. Siddiqui, A. Binder, E. Muller, and M. Kloft, "Deep one-class classification," Proc. Int. Conf. on machin learning (PMLR), 4393-4402 (2018).
S. Pidhorskyi, R. Almohsen, D. A. Adjeroh, and G. Doretto, "Generative probabilistic novelty detection with adversarial autoencoders," Advances in Neural Information Processing Systems, 31, 6823-6834 (2018).
Y. Koizumi, Y. Kawachi, and N. Harada, "Unsupervised detection of anomalous sound based on deep learning and the Neyman-Pearson lemma," IEEE/ACM Trans. on Audio, Speech, and Lang. Process. 27, 212-224 (2018). 10.1109/TASLP.2018.2877258
H. Purohit, R. Tanabe, K. Ichige, T. Endo, Y. Nikaido, K. Suefusa, and Y. Kawaguchi, "MIMII dataset: sound dataset for malfunctioning industrial machine investigation and inspection," Detection and Classification of Acoustic Scenes and Events, 209-213 (2019). 10.33682/m76f-d618
Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tanabe, H. Purohit, K. Suefusa, T. Endo, M. Yasuda, and N. Harada, "Description and discussion on DCASE2020 challenge task2: unsupervised anomalous sound detection for machine condition monitoring," Detection and Classification of Acoustic Scenes and Events, 81-85 (2020).
H. Yang, S. Byun, K. Lee, Y. Choo, and K. Kim, "Underwater acoustic research trends with machine learning: General background," J. Ocean Eng. Technol. 34, 147-154 (2020). 10.26748/KSOE.2020.015
H. Yang, K. Lee, Y. Choo, and K. Kim, "Underwater acoustic research trends with machine learning: Passive SONAR applications," J. Ocean Eng. Technol. 34, 227-236 (2020). 10.26748/KSOE.2020.017
H. Yang, S. Byun, K. Lee, and K. Kim, "Underwater acoustic research trends with machine learning: Active SONAR applications," J. Ocean Eng. Technol. 34, 277-284 (2020). 10.26748/KSOE.2020.018
R. J. Urick, Principles of Uunderwater Sound (Peninsula, Westport, 1993), pp. 181-200.
D. S. Dominguez, S. T. Guijarro, A. C. Lopez, and A. P. Gimenez, "ShipEar: An underwater vessel noise database," Applied Acoustics, 113, 64-69 (2016). 10.1016/j.apacoust.2016.06.008
K. J. V. Raposa, G. Scowcroft, J. H. Miller, D. R. Ketten, and A. N. Popper, "Discovery of sound in the sea: Resources for educators, students, the public, and policymakers," in Handbook of The Effects of Noise on Aquatic Life 2, edited by A. N. Popper and A. Hawkins (Springer, New York, 2016).
  • Publisher :The Acoustical Society Of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 40
  • No :4
  • Pages :337-346
  • Received Date :2021. 04. 20
  • Accepted Date : 2021. 06. 07