All Issue

2020 Vol.39, Issue 6 Preview Page

Research Article

30 November 2020. pp. 568-575
Abstract
References
1
Y. Luo, Z. Zhang, X. Wang, and Y. Zheng, "Ultrasonic bonding for thermoplastic microfluidic devices without energy director," Microelectronic Engineering, 87, 2429-2436 (2010). 10.1016/j.mee.2010.04.020
2
S. H. Ng, Z. F. Wang, and N. F. de Rooij, "Microfluidic connectors by ultrasonic welding," Microelectronic Engineering, 86, 1354-1357 (2009). 10.1016/j.mee.2009.01.048
3
H. Mekaru, H. Goto, and M. Takahashi, "Development of ultrasonic micro hot embossing technology," Microelectronic Engineering, 84, 1282-1287 (2007). 10.1016/j.mee.2007.01.235
4
H. Ahn, J. H. Jin, and W. Moon, "Design of piezoelectric micro-machined ultrasonic transducer for wideband ultasonic radiation in air" (in Korean), J. Acoust. Soc. Kr. 39, 87-97 (2020).
5
G. W. Swift, Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators (Acoustical Society of America, New York, 2002), pp. 23-24.
6
M. Kim, J. Kim, M. Kim, and K. Ha, "Visualization of temperature elevation due to focused ultrasound in dissipative acoustic medium" (in Korean), J. Acoust. Soc. Kr. 33, 21-30 (2014). 10.7776/ASK.2014.33.1.021
7
A. Gopinath and F. Mills, "Convective heat transfer from a sphere due to acoustic streaming," J. Heat Transfer. 115, 332-341 (1993). 10.1115/1.2910684
8
P. Vainshtein, M. Fichman, and C. Cutfinger, "Acoustic enhancement of heat transfer between two parallel plates," Int. J. Heat Mass Transf. 38, 1893-1899 (1995). 10.1016/0017-9310(94)00299-B
9
B.-G. Loh, S. Hyun, P. I. Ro, and C. Kleinstreuer, "Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer," J. Acoust. Soc. Am. 111, 875-883 (2002). 10.1121/1.143381111863189
10
J. A. Adeff and T. J. Hofler, "Design and construction of a solar-powered, thermoacoustically driven thermoacoustic refrigerator," J. Acoust. Soc. Am. 107, L37 (2000). 10.1121/1.42932410875408
11
F. Zink, J. Vipperman, and L. Schaefer, "CFD simulation of thermoacoustic cooling," Int. J. Heat Mass Transf. 53, 3940-3946 (2010). 10.1016/j.ijheatmasstransfer.2010.05.012
12
B. L. Minner, J. E. Braun, and L. Mongeau, "Theoretical evaluation of the optimal performance of a thermoacoustic refrigerator," ASHRAE Transactions, 103, 873 (1997).
13
S.-I. Sakamoto and Y. Watanabe, "The experimental studies of thermoacoustic cooler," Ultrasonics, 42, 53-56 (2004). 10.1016/j.ultras.2004.01.08615047261
14
E. C. Luo, W. Dai, Y. Zhang, and H. Ling, "Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine," Ultrasonics, 44, e1531-e1533 (2006). 10.1016/j.ultras.2006.08.00216979679
15
O. G. Symko, E. Abdel-Rahman, Y. S. Kwon, M. Emmi, and R. Behunin, "Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics," Microelectronics Journal, 35, 185-191 (2004). 10.1016/j.mejo.2003.09.017
16
M. Flitcroft and O. G. Symko, "Ultrasonic thermoacoustic energy converter, Ultrasonics, 53, 672-676 (2013). 10.1016/j.ultras.2012.10.00323218928
Information
  • Publisher :The Acoustical Society of Korea
  • Publisher(Ko) :한국음향학회
  • Journal Title :The Journal of the Acoustical Society of Korea
  • Journal Title(Ko) :한국음향학회지
  • Volume : 39
  • No :6
  • Pages :568-575
  • Received Date : 2020-07-06
  • Revised Date : 2020-08-13
  • Accepted Date : 2020-09-14